The width of the exponentially narrow stochastic layers.

Chaos

New York University, Courant Institute of Mathematical Sciences, New York, New York 10012.

Published: September 1994

Exponentially small splitting of the separatrix has been calculated for a high frequency large amplitude perturbation and the correspondent correction to the width of the stochastic layer is obtained. The result can be applied to the large amplitude perturbation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.166036DOI Listing

Publication Analysis

Top Keywords

large amplitude
8
amplitude perturbation
8
width exponentially
4
exponentially narrow
4
narrow stochastic
4
stochastic layers
4
layers exponentially
4
exponentially small
4
small splitting
4
splitting separatrix
4

Similar Publications

Field switching of microfabricated metamagnetic FeRh MRI contrast agents.

Sci Rep

January 2025

Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.

In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.

View Article and Find Full Text PDF

Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders.

Ann Clin Transl Neurol

January 2025

Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA.

Objective: Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved.

View Article and Find Full Text PDF

Cognitive and neural underpinnings of friend-prioritization in a perceptual matching task.

Soc Cogn Affect Neurosci

January 2025

School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, 52 Haidian Road, Beijing 100080, China.

Previous findings of better behavioral responses to self- over other-related stimuli suggest prioritized cognitive processes of self-related information. However, it is unclear whether the processing of information related to important others (e.g.

View Article and Find Full Text PDF

Low-frequency noise in detection systems significantly affects the performance of ultrasensitive and ultracompact spin-exchange relaxation-free atomic magnetometers. High frequency modulation detection helps effectively suppress the 1/ noise and enhance the signal-to-noise ratio, but conventional modulators are bulky and restrict the development of integrated atomic magnetometer modulation-detection systems. Resonant metasurface-based thin-film lithium-niobate (TFLN) active optics can modulate free-space light within a compact configuration.

View Article and Find Full Text PDF

Necrophagous blow flies are a commonly used forensic tool to estimate the minimum postmortem interval (PMI), where researchers collect development data under constant temperature regimes and construct models to estimate PMI. However, the ambient temperatures of real death scenes are often fluctuant, which limits the reliability of data obtained under constant temperature regimes. Here we investigate the possible differences in the development of Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae), an important species in forensic entomology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!