Heat transfer between two degrees of freedom.

Chaos

Department of Applied Science, P.O. Box 808, University of California at Davis-Livermore, Livermore, California 94550Institute for Experimental Physics, University of Vienna, Boltzmanngasse 5, Vienna A-1090, AustriaTheoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545National Energy Research Supercomputer Center, P.O. Box 5509, Livermore, California 94550.

Published: October 1991

A particularly simple chaotic nonequilibrium open system with two Cartesian degrees of freedom, characterized by two distinct temperatures T(x) and T(y), is introduced. The two temperatures are maintained by Nose-Hoover canonical-ensemble thermostats. Both the equilibrium (no net heat transfer) and nonequilibrium (dissipative) Lyapunov spectra are characterized for this simple system.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.165860DOI Listing

Publication Analysis

Top Keywords

heat transfer
8
degrees freedom
8
transfer degrees
4
freedom simple
4
simple chaotic
4
chaotic nonequilibrium
4
nonequilibrium open
4
open system
4
system cartesian
4
cartesian degrees
4

Similar Publications

Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.

View Article and Find Full Text PDF

Interfacial fluid manipulation with bioinspired strategies: special wettability and asymmetric structures.

Chem Soc Rev

January 2025

School of materials science and engineering, Smart sensing interdisciplinary science center, Nankai university, Tianjin 300350, P. R. China.

The inspirations from nature always enlighten us to develop advanced science and technology. To survive in complicated and harsh environments, plants and animals have evolved remarkable capabilities to control fluid transfer sophisticated designs such as wettability contrast, oriented micro-/nano-structures, and geometry gradients. Based on the bioinspired structures, the on-surface fluid manipulation exhibits spontaneous, continuous, smart, and integrated performances, which can promote the applications in the fields of heat transfer, microfluidics, heterogeneous catalysis, water harvesting, Although fluid manipulating interfaces (FMIs) have provided plenty of ideas to optimize the current systems, a comprehensive review of history, classification, fabrication, and integration focusing on their interfacial chemistry and asymmetric structure is highly required.

View Article and Find Full Text PDF

Plasmonic semiconductors exhibit significant potential for harvesting near-IR solar energy, although their mechanisms of plasmon-induced hot electron transfer (HET) are poorly understood. We report a transient absorption study of plasmon-induced HET in p-CuS/CdS type II heterojunctions. Near-IR excitation of the p-CuS plasmon band at ∼1400 nm leads to ultrafast HET into the CdS conduction band with a time constant of <150 fs and a quantum efficiency of ∼0.

View Article and Find Full Text PDF

The Antarctic Circumpolar Current (ACC) dominates the transfer of heat, salt, and tracers around the Southern Ocean (SO), driving the upwelling of carbon-rich deep waters around Antarctica. Paleoclimate reconstructions reveal marked variability in SO circulation; however, few records exist coupling quantitative reconstructions of ACC flow with tracers of SO upwelling spanning multiple Pleistocene glacial cycles. Here, we reconstruct near-bottom flow speed variability in the SO south of Africa, revealing systematic glacial-interglacial variations in the strength and/or proximity of ACC jets.

View Article and Find Full Text PDF

Hot dry rock (HDR) is a novel green, low-carbon energy. Its development requires the creation of fracture channels in deep thermal reservoirs. Traditional methods such as hydraulic fracturing have limited effectiveness in reservoir stimulation, so a method of liquid nitrogen cold shock was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!