Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The problem of normal and anomalous diffusion is examined for the four-dimensional (4-D) map that arises from the problem of particle motion in a constant magnetic field and electrostatic wave packet. This 4-D map consists of two coupled 2-D maps: a standard map and a web map. The case of a weak chaos is considered. It is shown that due to the finite observation time, the particle diffusion possesses strong nonhomogeneous properties. Existence of long-living bundles of orbits with coherent propagation property is checked. These bundles are named "chaotic jets." The same name is used for a part of the trajectory if this part corresponds to long-living trapping or flight. The existence of chaotic jets depends on the topological properties of the phase space and influences the asymptotic law of transport. The particle transport can be considered as a random walk in the multifractal space-time that is produced by flights and trappings of a test particle in some area of its phase space. Levy random walk theory and its generalization for the multifractal space-time situation is considered and asymptotic laws for displacements are derived. Different intermediate asymptotics are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.165824 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!