Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper we examine dynamical modes resulting from diffusion-like interaction of two model biochemical cells. Kinetics in each of the cells is given by the ICC model of calcium ions in the cytosol. Constraints for one of the cells are set so that it is excitable. One of the constraints in the other cell - a fraction of activated cell surface receptors-is varied so that the dynamics in the cell is either excitable or oscillatory or a stable focus. The cells are interacting via mass transfer and dynamics of the coupled system are studied as two parameters are varied-the fraction of activated receptors and the coupling strength. We find that (i) the excitator-excitator interaction does not lead to oscillatory patterns, (ii) the oscillator-excitator interaction leads to alternating phase-locked periodic and quasiperiodic regimes, well known from oscillator-oscillator interactions; torus breaking bifurcation generates chaos when the coupling strength is in an intermediate range, (iii) the focus-excitator interaction generates compound oscillations arranged as period adding sequences alternating with chaotic windows; the transition to chaos is accompanied by period doublings and folding of branches of periodic orbits and is associated with a Shilnikov homoclinic orbit. The nature of spontaneous self-organized oscillations in the focus-excitator range is discussed. (c) 1999 American Institute of Physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.166400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!