A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of cardiac tissue structure in defibrillation. | LitMetric

The role of cardiac tissue structure in defibrillation.

Chaos

Departments of Biomedical Engineering and Mathematics, Tulane University, Boggs Center, Suite 500, New Orleans, Louisiana 70118.

Published: March 1998

The purpose of this paper is to investigate the relationship between cardiac tissue structure, applied electric field, and the transmembrane potential induced in the process of defibrillation. It outlines a general understanding of the structural mechanisms that contribute to the outcome of a defibrillation shock. Electric shocks defibrillate by changing the transmembrane potential throughout the myocardium. In this process first and foremost the shock current must access the bulk of myocardial mass. The exogenous current traverses the myocardium along convoluted intracellular and extracellular pathways channeled by the tissue structure. Since individual fibers follow curved pathways in the heart, and the fiber direction rotates across the ventricular wall, the applied current perpetually engages in redistribution between the intra- and extracellular domains. This redistribution results in changes in transmembrane potential (membrane polarization): regions of membrane hyper- and depolarization of extent larger than a single cell are induced in the myocardium by the defibrillation shock. Tissue inhomogeneities also contribute to local membrane polarization in the myocardium which is superimposed over the large-scale polarization associated with the fibrous organization of the myocardium. The paper presents simulation results that illustrate various mechanisms by which cardiac tissue structure assists the changes in transmembrane potential throughout the myocardium. (c) 1998 American Institute of Physics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.166299DOI Listing

Publication Analysis

Top Keywords

tissue structure
16
transmembrane potential
16
cardiac tissue
12
defibrillation shock
8
potential myocardium
8
changes transmembrane
8
membrane polarization
8
myocardium
6
tissue
5
role cardiac
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!