(Internal) transformations on the space Sigma of automaton configurations are defined as bi-infinite sequences of permutations of the cell symbols. A pair of transformations (gamma,theta) is said to be an internal symmetry of a cellular automaton f:Sigma-->Sigma if f=theta(-1)fgamma. It is shown that the full group of internal symmetries of an automaton f can be encoded as a group homomorphism F such that theta=F(gamma). The domain and image of the homomorphism F have, in general, infinite order and F is presented by a local automaton-like rule. Algorithms to compute the symmetry homomorphism F and to classify automata by their symmetries are presented. Examples on the types of dynamical implications of internal symmetries are discussed in detail. (c) 1997 American Institute of Physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.166217 | DOI Listing |
J Phys Chem A
January 2025
Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada.
High resolution infrared spectra of water-CO dimers are further studied using tunable infrared sources to probe a pulsed slit jet supersonic expansion. The relatively weak transition of DO-CO in the DO ν fundamental region (≈2760 cm) is observed for the first time, as are various spectra of DO-CO. Combination bands involving the intermolecular in plane geared bend (disrotatory) mode are observed for HO-CO (≈1642, 2397 cm) in the HO ν and CO ν regions, for HDO-CO (≈2761 cm) in the HDO ν region, and for DO-CO (≈2386, 2705 and 2821 cm) in the CO ν, DO ν, and DO ν regions.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Hospital Virgen de la Concha, 49022 Zamora, Spain.
Beijing Da Xue Xue Bao Yi Xue Ban
February 2025
Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digi-tal Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing 100081, China.
Objective: To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.
Methods: Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm.
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Diseases, Helsinki University and Helsinki University Hospital, Helsinki, Finland.
Purpose: Preoperative virtual planning and osteosynthesis with patient-specific implants (PSIs) have become a quotidian approach to many maxillofacial elective surgery setups. When a process is well-organized, a similar approach can be harnessed to serve the needs of exact primary reconstructions, especially in midfacial trauma cases. PSI osteosynthesis of the mandible is, however, more challenging because a mirror technique of the facial sides is often unreliable due to inherent lack of symmetry, and movement of the mandible increases the risk of loosening of the osteosynthesis.
View Article and Find Full Text PDFPhotochem Photobiol
January 2025
Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka, Russia.
Recently (Photochem Photobiol. 2023;100:1277-1289. doi:10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!