Using reactors of different sizes and geometries the dynamics of the frontal polymerization of 1,6-hexanediol diacrylate (HDDA) and pentaerythritol tetraacrylate (PETAC), with ammonium persulfate as the initiator were studied. For this system, the frontal polymerization exhibits complex behavior that depends on the ratio of the monomers. For a particular range of monomers concentration, the polymerization front becomes nonplanar, and spin modes appear. By varying the reactor diameter, we experimentally confirmed the expected shift of the system to a greater number of "hot spots" for larger diameters. For square test tubes a "zig-zag" mode was observed for the first time in frontal polymerization. We confirmed the viscosity-dependence of the spin mode instabilities. We also observed novel modes in cylinder-inside-cylinder reactors. Lastly, using a conical reactor with a continuously varying diameter, we observed what may be evidence for bistability depending on the direction of propagation. We discuss these finding in terms of the standard linear stability analysis for propagating fronts. (c) 2002 American Institute of Physics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1445436 | DOI Listing |
Cutis
November 2024
Drs. Cortez, Hassun, Linhares, Pinheiro, Florenço, Michalany, Bagatin, and Nascimento are from the Federal University of São Paulo, Brazil. Drs. Cortez, Hassun, Linhares, Pinheiro, Florenço, Bagatin, and Nascimento are from the Department of Dermatology, and Dr. Michalany is from the Department of Dermatopathology. Drs. Cortez de Almeida and Melo are from Department of Dermatology, Rio de Janeiro State University, Brazil.
Cosmetic procedures carry inherent risks of adverse events. Though rarely reported, transient and permanent alopecia are potential complications of these procedures. We report the case of a 35-year-old woman who developed pain and patches of nonscarring alopecia with erythema and edema following aesthetic application of poly-L-lactic acid (PLLA) on the face and along the frontal hairline.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Biological Sciences (Pharmacology and Toxicology), National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, Balanagar, Hyderabad, 500037, Telangana, India.
The negative impact of repeated-mild traumatic brain injury (rmTBI) is profoundly seen in circadian-disrupted individuals. The unrelenting inflammation, glial activation, and gut dysbiosis are key neuropathological aberrations in the aftermath of rmTBI. In this study, we examined the impact of chitosan lactate (CL) on circadian disturbance (CD) + rmTBI-generated neurological dysfunctions and its prebiotic response on the gut-brain axis.
View Article and Find Full Text PDFAlzheimers Res Ther
December 2024
Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France.
Background: Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capacity and increased susceptibility to degenerative diseases such as Alzheimer's disease (AD). Telomere shortening has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility of developing AD in cognitively healthy older adults.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
Estuarine fronts are formed due to sharp density discontinuities resulting from the convergence of different water masses. This study, conducted in May and August of 2022 during the southwest monsoon season, focuses on assessing the role of estuarine fronts at Kuala Terengganu estuary in the accumulation of microplastics in surface seawater. The Terengganu River basin area covers approximately 4600 km and consists of two main tributaries that drain into the Kuala Terengganu estuary.
View Article and Find Full Text PDFEur J Neurol
January 2025
Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, Jinan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!