Mathematical model of the cell division cycle of fission yeast.

Chaos

Department of Agricultural Chemical Technology, Budapest University of Technology and Economics, Szt Gellert ter 4, 1111 Budapest, Hungary.

Published: March 2001

Much is known about the genes and proteins controlling the cell cycle of fission yeast. Can these molecular components be spun together into a consistent mechanism that accounts for the observed behavior of growth and division in fission yeast cells? To answer this question, we propose a mechanism for the control system, convert it into a set of 14 differential and algebraic equations, study these equations by numerical simulation and bifurcation theory, and compare our results to the physiology of wild-type and mutant cells. In wild-type cells, progress through the cell cycle (G1-->S-->G2-->M) is related to cyclic progression around a hysteresis loop, driven by cell growth and chromosome alignment on the metaphase plate. However, the control system operates much differently in double-mutant cells, wee1(-) cdc25Delta, which are defective in progress through the latter half of the cell cycle (G2 and M phases). These cells exhibit "quantized" cycles (interdivision times clustering around 90, 160, and 230 min). We show that these quantized cycles are associated with a supercritical Hopf bifurcation in the mechanism, when the wee1 and cdc25 genes are disabled. (c) 2001 American Institute of Physics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1345725DOI Listing

Publication Analysis

Top Keywords

fission yeast
12
cell cycle
12
cycle fission
8
control system
8
cell
5
mathematical model
4
model cell
4
cell division
4
cycle
4
division cycle
4

Similar Publications

ESCRT elicits vacuolar fission in the absence of Vps4 in budding yeast.

Biochem Biophys Res Commun

December 2024

Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:

In budding yeast, endosomal sorting complex required for transport (ESCRT) mediates microautophagy by vacuolar membrane invagination into the vacuolar lumen, followed by Vps4-assisted membrane constriction and abscission. Here, we show that ESCRT elicits vacuolar fission in the absence of Vps4 after nutrient starvation, although vacuolar fusion is facilitated in wild-type cells in these conditions. ESCRT mediated vacuolar membrane invagination in vps4Δ cells, thereby causing vacuolar fission.

View Article and Find Full Text PDF

Klp2-mediated Rsp1-Mto1 colocalization inhibits microtubule-dependent microtubule assembly in fission yeast.

Sci Adv

January 2025

MOE Key Laboratory for Cellular Dynamics and Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.

Microtubule assembly takes place at the centrosome and noncentrosomal microtubule-organizing centers (MTOCs). However, the mechanisms controlling the activity of noncentrosomal MTOCs are poorly understood. Here, using the fission yeast as a model organism, we demonstrate that the kinesin-14 motor Klp2 interacts with the J-domain Hsp70/Ssa1 cochaperone Rsp1, an inhibitory factor of microtubule assembly, and that Klp2 is required for the proper localization of Rsp1 to microtubules.

View Article and Find Full Text PDF

The assembly of repressive heterochromatin in eukaryotic genomes is crucial for silencing lineage-inappropriate genes and repetitive DNA elements. Paradoxically, transcription of repetitive elements within constitutive heterochromatin domains is required for RNA-based mechanisms, such as the RNAi pathway, to target heterochromatin assembly proteins. However, the mechanism by which heterochromatic repeats are transcribed has been unclear.

View Article and Find Full Text PDF

Predicting gene sequences with AI to study codon usage patterns.

Proc Natl Acad Sci U S A

January 2025

Department of Computer Science, University of Haifa, Haifa 3303221, Israel.

Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained AI models to predict codons given their amino acid sequence in the eukaryotes and and the bacteria and to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels.

View Article and Find Full Text PDF

Optimization of the quality of sea buckthorn juice by enzymatic digestion and inoculation sequence.

Food Chem

December 2024

College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:

Sea buckthorn, rich in nutrients and bioactive compounds such as phenolics, fatty acids, and vitamins, presents processing challenges due to its intense sourness and bland flavor. This study addresses key challenges in flavor enhancement and sourness reduction by evaluating the effects of pectinase treatment and inoculation sequences on the overall quality. Optimal malic acid degradation and antioxidant occurred when Schizosaccharomyces pombe (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!