A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New phases of phospholipids and implications to the membrane fusion problem. | LitMetric

New phases of phospholipids and implications to the membrane fusion problem.

Biochemistry

National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973, USA.

Published: June 2003

Membrane fusion is a ubiquitous process in eukaryotic cells. When two membranes fuse, lipid must undergo molecular rearrangements at the point of merging. To understand how lipid structure transitions occur, scientists studied the phase transition of lipid between the lamellar (L(alpha)) phase and the inverted hexagonal (H(II)) phase, based on the idea that lipid must undergo a similar rearrangement as in fusion. However, previous investigations on the system of dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylethanolamine (DOPE) did not reveal intermediate phases between the L(alpha) and H(II) phases. Recently, we found a rhombohedral phase of diphytanoylphosphatidylcholine between its L(alpha) and H(II) phases using substrate-supported samples. Here we report the observation of two new phases in the DOPC-DOPE system: a rhombohedral phase and a distorted hexagonal phase. The rhombohedral phase confirms the stalk hypothesis for the L(alpha)-H(II) transition, but the phase of stable stalks exists only for a certain range of spontaneous curvature. The distorted hexagonal phase exists only in a lipid mixture. It implies that lipids may demix to adjust its local spontaneous curvature in order to achieve energy minimum under stress.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0344836DOI Listing

Publication Analysis

Top Keywords

rhombohedral phase
12
phase
9
membrane fusion
8
lipid undergo
8
lalpha hii
8
hii phases
8
distorted hexagonal
8
hexagonal phase
8
spontaneous curvature
8
phases
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!