Craniofacial and skull base trauma.

J Trauma

Department of Surgery, Division of Trauma Surgery, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA.

Published: May 2003

Background: Traumatic craniofacial and skull base injuries require a multidisciplinary team approach. Trauma physicians must evaluate carefully, triage properly, and maintain a high index of suspicion to improve survival and enhance functional recovery. Frequently, craniofacial and skull base injuries are overlooked while treating more life-threatening injuries. Unnoticed complex craniofacial and skull base fractures, cerebrospinal fluid fistulae, and cranial nerve injuries can result in blindness, diplopia, deafness, facial paralysis, or meningitis. Early recognition of specific craniofacial and skull base injury patterns can lead to identification of associated injuries and allow for more rapid and appropriate management.

Conclusion: Early detection and treatment of craniofacial and skull base traumatic injuries should lead to decreased morbidity and mortality. This review discusses the most common of these injuries, their possible complications, and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.TA.0000066180.14666.8BDOI Listing

Publication Analysis

Top Keywords

craniofacial skull
24
skull base
24
base injuries
8
injuries
7
craniofacial
6
base
6
skull
5
base trauma
4
trauma background
4
background traumatic
4

Similar Publications

Unlabelled: Guided bone regeneration (GBR) is an alternative treatment for craniofacial bone defects reconstruction through membrane barrier adaptation, such as demineralized dentin material membrane (DDMM). DDMM is used as a substitute for GBR material, which aligns with Green Economy principles, it has a good biological osteoinductive and osteoconductive effects, and its structure resembles bones. The balance of bone remodeling when experiencing craniofacial defects will be altered and allow changes to resorption activity, so the mechanisms of osteoclastogenesis and bone resorption are vital.

View Article and Find Full Text PDF

Osseointegration is a crucial property of biomaterials used for bone defect repair. While titanium is the gold standard in craniofacial surgeries, various polymeric biomaterials are being explored as alternatives. However, polymeric materials can be bioinert, hindering integration with surrounding tissues.

View Article and Find Full Text PDF

The cranial mesenchyme, originating from both neural crest and mesoderm, imparts remarkable regional specificity and complexity to postnatal calvarial tissue. While the distinct embryonic origins of the superior and dura periosteum of the cranial parietal bone have been described, the extent of their respective contributions to bone and vessel formation during adult bone defect repair remains superficially explored. Utilizing transgenic mouse models in conjunction with high-resolution multiphoton laser scanning microscopy (MPLSM), we have separately evaluated bone and vessel formation in the superior and dura periosteum before and after injury, as well as following intermittent treatment of recombinant peptide of human parathyroid hormone (rhPTH), Teriparatide.

View Article and Find Full Text PDF

The Role of Gli1 Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment.

J Oral Rehabil

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.

Objective: This review summarises the role of Gli1 (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases.

Design: The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching.

Results: Gli1 mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle.

View Article and Find Full Text PDF

Two experimental methods to integrate intra-oral scans into 3D stereophotogrammetric facial images.

Clin Oral Investig

January 2025

Department of Dentistry Section Orthodontics and Craniofacial Biology, Radboud University Medical Center, P.O. Box 9101, Nijmegen, 6500 HB, The Netherlands.

Objectives: For this research two different ways for integrating intra-oral scans into three-dimensional (3D) stereophotogrammetric images are analyzed and compared to the gold standard method.

Materials And Methods: A cross-sectional study was performed. For each patient a complete dataset was collected, which was used to generate 3D fusion models by three different methods: method A using cheek retractors, method B using a tracer and method C using full-skull CBCT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!