Background: Primary abdominal compartment syndrome (ACS) is a known complication of damage control. Recently secondary ACS has been reported in patients without abdominal injury who require aggressive resuscitation. The purpose of this study was to compare the epidemiology of primary and secondary ACS and develop early prediction models in a high-risk cohort who were treated in a similar fashion.
Methods: Major torso trauma patients underwent standardized resuscitation and had prospective data collected including occurrence of ACS, demographics, ISS, urinary bladder pressure, gastric tonometry (GAP(CO2) = gastric regional CO(2) minus end tidal CO(2)), laboratory, respiratory, and hemodynamic data. With primary and secondary ACS as endpoints, variables were tested by uni- and multivariate logistic analysis (MLA).
Results: From 188 study patients during the 44-month period, 26 (14%) developed ACS-11 (6%) were primary ACS and 15 (8%) secondary ACS. Primary and secondary ACS had similar demographics, shock, and injury severity. Significant univariate differences included: time to decompression from ICU admit (600 +/- 112 vs. 360 +/- 48 min), Emergency Department (ED) crystalloid (4 +/- 1 vs. 7 +/- 1 L), preICU crystalloid (8 +/- 1 vs. 12 +/- 1L), ED blood administration (2 +/- 1 vs. 6 +/- 1 U), GAP(CO2) (24 +/- 3 vs. 36 +/- 3 mmHg), requiring pelvic embolization (9 vs. 47%), and emergency operation (82% vs. 40%). Early predictors identified by MLA of primary ACS included hemoglobin concentration, GAP(CO2), temperature, and base deficit; and for secondary ACS they included crystalloid, urinary output, and GAP(CO2). The areas under the receiver-operator characteristic curves calculated upon ICU admission are primary= 0.977 and secondary= 0.983. Primary and secondary ACS patients had similar poor outcomes compared with nonACS patients including ventilator days (primary= 13 +/- 3 vs. secondary= 14 +/- 3 vs. nonACS = 8 +/- 2), multiple organ failure (55% vs. 53% vs. 12%), and mortality (64% vs. 53% vs. 17%).
Conclusion: Primary and secondary ACS have similar demographics, injury severity, time to decompression from hospital admit, and bad outcome. 2 degrees ACS is an earlier ICU event preceded by more crystalloid administration. With appropriate monitoring both could be accurately predicted upon ICU admission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.TA.0000070166.29649.F3 | DOI Listing |
HPB (Oxford)
December 2024
Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, United States. Electronic address:
Objective: We sought to develop a machine learning (ML) preoperative model to predict bile leak following hepatectomy for primary and secondary liver cancer.
Methods: An eXtreme Gradient Boosting (XGBoost) model was developed to predict post-hepatectomy bile leak using data from the ACS-NSQIP database. The model was externally validated using data from hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) multi-institutional databases.
ACS Appl Mater Interfaces
January 2025
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China.
Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States.
Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied .
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
ACS Omega
December 2024
Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
We herein report a microwave-assisted Buchwald-Hartwig double amination reaction to synthesize potential thermally activated delayed fluorescence compounds, forming C(sp)-N bonds between donor and acceptor units. Our approach reduces reaction times from 24 h to 10-30 min and achieves moderate to excellent yields, outperforming conventional heating methods. The method is compatible with various aryl bromides and secondary amines, including phenoxazine, phenothiazine, acridine, and carbazole.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!