The structure of a new crystal form (space group C2), grown at pH 8.0 and diffracting to 1.95 A resolution, of the replicative homo-hexameric DNA helicase RepA encoded by plasmid RSF1010 is reported. In contrast to previous crystals grown at pH 6.0 in space group P2(1) (Niedenzu et al., 2001), only one half (a trimer) of the RepA hexamer occupies the asymmetric unit of the space-group C2 crystals. The new crystal packing explains the pH-dependent hexamer-hexamer association mechanism of RepA. The C-terminus (264)VLERQRKSKGVPRGEA(279), which could not be modelled in the previous structure, is clearly defined in the present electron density except for the last four amino acids. Sulfate anions occupy the six ATPase active sites of RepA at positions where the product phosphates are supposed to bind. Binding of sulfate anions induces conformational changes both at the ATPase active sites and throughout the whole molecular structure. In agreement with electron microscopy, the above studies implicate structural changes to an "open" form that may occur upon binding and hydrolysis of nucleotide 5'-triphosphates and could be essential for DNA duplex-unwinding activity.

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0907444903004025DOI Listing

Publication Analysis

Top Keywords

dna helicase
8
helicase repa
8
195 resolution
8
structural changes
8
changes "open"
8
"open" form
8
space group
8
sulfate anions
8
atpase active
8
active sites
8

Similar Publications

Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.

View Article and Find Full Text PDF

Cell cycle progression of under-replicated cells.

Nucleic Acids Res

January 2025

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.

Cell cycle checkpoints are the regulatory mechanisms that secure the strict order of cellular events for cell division that ensure genome integrity. It has been proposed that mitosis initiation depends on the completion of DNA replication, which must be tightly controlled to guarantee genome duplication. Contrary to these conventional hypotheses, we showed here that cells were able to enter mitosis without completion of DNA replication.

View Article and Find Full Text PDF

SSB promotes DnaB helicase passage through DnaA complexes at the replication origin oriC for bidirectional replication.

J Biochem

January 2025

Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.

View Article and Find Full Text PDF

Ruvbl1 silencing affects reproduction of the corn planthopper, Peregrinus maidis.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Ruvbl1 (also known as TIP49, Pontin) encodes an ATPase of the AAA+ protein superfamily involved in several cellular functions, including chromatin remodeling, control of transcription, and cellular development (motility, growth, and proliferation). While its role has been well established in model organisms including vertebrates and invertebrates (e.g.

View Article and Find Full Text PDF

DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!