The structure of a new crystal form (space group C2), grown at pH 8.0 and diffracting to 1.95 A resolution, of the replicative homo-hexameric DNA helicase RepA encoded by plasmid RSF1010 is reported. In contrast to previous crystals grown at pH 6.0 in space group P2(1) (Niedenzu et al., 2001), only one half (a trimer) of the RepA hexamer occupies the asymmetric unit of the space-group C2 crystals. The new crystal packing explains the pH-dependent hexamer-hexamer association mechanism of RepA. The C-terminus (264)VLERQRKSKGVPRGEA(279), which could not be modelled in the previous structure, is clearly defined in the present electron density except for the last four amino acids. Sulfate anions occupy the six ATPase active sites of RepA at positions where the product phosphates are supposed to bind. Binding of sulfate anions induces conformational changes both at the ATPase active sites and throughout the whole molecular structure. In agreement with electron microscopy, the above studies implicate structural changes to an "open" form that may occur upon binding and hydrolysis of nucleotide 5'-triphosphates and could be essential for DNA duplex-unwinding activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/s0907444903004025 | DOI Listing |
Nat Commun
January 2025
DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX 77030, USA.
Cell cycle checkpoints are the regulatory mechanisms that secure the strict order of cellular events for cell division that ensure genome integrity. It has been proposed that mitosis initiation depends on the completion of DNA replication, which must be tightly controlled to guarantee genome duplication. Contrary to these conventional hypotheses, we showed here that cells were able to enter mitosis without completion of DNA replication.
View Article and Find Full Text PDFJ Biochem
January 2025
Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
For bidirectional replication in E. coli, higher-order complexes are formed at the replication origin oriC by the initiator protein DnaA, which locally unwinds the left edge of oriC to promote the loading of two molecules of DnaB onto the unwound region via dynamic interactions with the helicase-loader DnaC and the oriC-bound DnaA complex. One of the two helicases must translocate rightwards through oriC-bound DnaA complex.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.
Ruvbl1 (also known as TIP49, Pontin) encodes an ATPase of the AAA+ protein superfamily involved in several cellular functions, including chromatin remodeling, control of transcription, and cellular development (motility, growth, and proliferation). While its role has been well established in model organisms including vertebrates and invertebrates (e.g.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
DDX21, a member of the DEAD-box RNA helicase family, plays a pivotal role in various aspects of RNA metabolism, including ribosomal RNA (rRNA) processing, transcription, and translation. Its diverse functions in cancer progression and viral infections have attracted considerable attention. DDX21 exerts a pivotal function through ribosomal DNA (rDNA) transcription and rRNA processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!