Viral assembly of oriented quantum dot nanowires.

Proc Natl Acad Sci U S A

Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, Center for Nano- and Molecular Science and Technology, and Texas Materials Institute, University of Texas, Austin, TX 78712, USA.

Published: June 2003

The highly organized structure of M13 bacteriophage was used as an evolved biological template for the nucleation and orientation of semiconductor nanowires. To create this organized template, peptides were selected by using a pIII phage display library for their ability to nucleate ZnS or CdS nanocrystals. The successful peptides were expressed as pVIII fusion proteins into the crystalline capsid of the virus. The engineered viruses were exposed to semiconductor precursor solutions, and the resultant nanocrystals that were templated along the viruses to form nanowires were extensively characterized by using high-resolution analytical electron microscopy and photoluminescence. ZnS nanocrystals were well crystallized on the viral capsid in a hexagonal wurtzite or a cubic zinc blende structure, depending on the peptide expressed on the viral capsid. Electron diffraction patterns showed single-crystal type behavior from a polynanocrystalline area of the nanowire formed, suggesting that the nanocrystals on the virus were preferentially oriented with their [001] perpendicular to the viral surface. Peptides that specifically directed CdS nanocrystal growth were also engineered into the viral capsid to create wurtzite CdS virus-based nanowires. Lastly, heterostructured nucleation was achieved with a dual-peptide virus engineered to express two distinct peptides within the same viral capsid. This work represents a genetically controlled biological synthesis route to a semiconductor nanoscale heterostructure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC165810PMC
http://dx.doi.org/10.1073/pnas.0832310100DOI Listing

Publication Analysis

Top Keywords

viral capsid
16
virus engineered
8
viral
6
capsid
5
viral assembly
4
assembly oriented
4
oriented quantum
4
quantum dot
4
nanowires
4
dot nanowires
4

Similar Publications

The clinical management of people with multidrug-resistant (MDR) human immunodeficiency virus (HIV) remains challenging despite continued development of antiretroviral agents. A 58-year-old male individual with MDR HIV and Kaposi sarcoma (KS) was treated with a new antiretroviral regimen consisting of anti-CD4 domain 1 antibody UB-421 and capsid inhibitor lenacapavir. The individual experienced delayed but sustained suppression of plasma viremia and a substantial increase in the CD4 T cell count.

View Article and Find Full Text PDF

Purpose: To report the clinical presentation, treatment course, and outcome of a case of bilateral frosted branch angiitis (FBA) and neuroretinitis associated with acute Epstein-Barr virus (EBV) infection in a pediatric patient with Turner Syndrome.

Methods: Case report with multimodal ocular imaging and extensive systemic workup.

Results: A 16-year-old female with Turner syndrome presented with acute bilateral vision loss, hearing loss, and ataxia.

View Article and Find Full Text PDF

Variance in the properties of optical mesoscopic probes is often a limiting factor in applications. In the thermodynamic limit, the smaller the probe, the larger the relative variance. However, specific viral protein cages can assemble efficiently outside the bounds of statistical fluctuations at equilibrium through a process that is characterized by intrinsic quality-control and self-limiting capabilities.

View Article and Find Full Text PDF

Enhanced Discriminability of Viral Vectors in Viscous Nanopores.

Small Methods

January 2025

Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.

Achieving safe and efficient gene therapy hinges upon the inspection of genomes enclosed within individual nano-carriers to mitigate potential health risks associated with empty or fragment-filled vectors. Here solid-state nanopore sensing is reported for identifications of intermediate adeno-associated virus (AAV) vectors in liquid. The method exploits the phenomenon of translocation slowdown induced by the viscosity of salt water-organic mixtures.

View Article and Find Full Text PDF

Avian circoviruses and hepadnaviruses identified in tissue samples of various waterfowl.

Virology

December 2024

School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA; Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa. Electronic address:

North America is home to over 40 species of migratory waterfowl. Utilizing tissue and cloacal-swab sampling from hunter-harvested carcasses in 2021-2023, we identified circular DNA viruses associated with 116 waterfowl samples from nine species (American wigeons, Mexican ducks, northern shovelers, northern pintails, canvasbacks, mallards, American black ducks, gadwalls, and green-winged teals). We determined the genome sequences of viruses in the families Circoviridae (n = 18) and Hepadnaviridae (n = 2) from the 13 virus-infected birds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!