Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C. albicans gene that is able to rescue a S. cerevisiae ctr1/ctr3-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated CaCTR1, encodes a 251 amino acid protein with a molecular mass of 27.8 kDa. Comparisons between the deduced amino acid sequence of the C. albicans Ctr1p and S. cerevisiae Ctr1p indicated that they share 39.6 % similarity and 33.0 % identity over their entire length. Within the predicted protein product of CaCTR1 there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of CaCTR1 contains four sequences with significant identity to S. cerevisiae copper response elements. CaCTR1 is transcriptionally regulated in S. cerevisiae in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of CaCTR1 in C. albicans is also regulated in a copper-responsive manner. This raises the possibility that CaCTR1 may be regulated in C. albicans by a Mac1p-like transactivator. A C. albicans ctr1-null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the C. albicans ctr1-null mutant. It is proposed that CaCTR1 facilitates transport of copper into the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/mic.0.26172-0 | DOI Listing |
J Med Chem
January 2025
The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.
Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism.
View Article and Find Full Text PDFSci Rep
January 2025
Cellulose and Paper Department, National Research Centre, 33 El Bohouth Str, P.O. 12622, Dokki Giza, Egypt.
A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.
View Article and Find Full Text PDFSci Rep
January 2025
Obstetrics and Gynaecology Department, Faculty of Medicine, Minia University, Minia, Egypt.
Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).
View Article and Find Full Text PDFFront Fungal Biol
December 2024
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.
The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!