The Candida albicans CTR1 gene encodes a functional copper transporter.

Microbiology (Reading)

Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.

Published: June 2003

Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C. albicans gene that is able to rescue a S. cerevisiae ctr1/ctr3-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated CaCTR1, encodes a 251 amino acid protein with a molecular mass of 27.8 kDa. Comparisons between the deduced amino acid sequence of the C. albicans Ctr1p and S. cerevisiae Ctr1p indicated that they share 39.6 % similarity and 33.0 % identity over their entire length. Within the predicted protein product of CaCTR1 there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of CaCTR1 contains four sequences with significant identity to S. cerevisiae copper response elements. CaCTR1 is transcriptionally regulated in S. cerevisiae in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of CaCTR1 in C. albicans is also regulated in a copper-responsive manner. This raises the possibility that CaCTR1 may be regulated in C. albicans by a Mac1p-like transactivator. A C. albicans ctr1-null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the C. albicans ctr1-null mutant. It is proposed that CaCTR1 facilitates transport of copper into the cell.

Download full-text PDF

Source
http://dx.doi.org/10.1099/mic.0.26172-0DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
copper uptake
8
amino acid
8
albicans ctr1-null
8
ctr1-null mutant
8
copper
7
albicans
7
cactr1
7
cerevisiae
5
albicans ctr1
4

Similar Publications

Lanosterol 14α-Demethylase (CYP51)/Heat Shock Protein 90 (Hsp90) Dual Inhibitors for the Treatment of Invasive Candidiasis.

J Med Chem

January 2025

The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China.

Invasive candidiasis has attracted global attention with a high incidence and mortality. Current antifungal drugs are limited by unfavorable therapeutic efficacy, significant hepatorenal toxicity, and the development of drug resistance. Herein, we designed the first generation of lanosterol 14α-demethylase (CYP51)/heat shock protein 90 (Hsp90) dual inhibitors on the basis of antifungal synergism.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

The antimicrobial peptide (AMP) circularized bacteriocin enterocin AS-48 produced by sp. exhibits broad-spectrum antibacterial activity via dimer insertion into the plasma membrane to form membrane pore structures, compromising membrane integrity and leading to bactericidal activity. A specific alpha-helical region of enterocin AS-48 has been shown to be responsible for the membrane-penetrating activity of the peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!