Individuals with hepatic lipase (HL) deficiency are often characterized by elevated levels of triglycerides (TGs) and cholesterol. The aim of the present study was to characterize the molecular defect leading to severe HL deficiency in a Québec-based kindred. In the proband and two of her brothers, the very low to undetectable HL activity resulted from compound heterozygosity for two rare HL gene mutations, a previously unknown missense mutation in exon 5 designated A174T and the previously reported T383M mutation in exon 8 of the HL gene. The mutation at codon 174 resulted in the substitution of alanine for threonine, a polar amino acid, in a highly conserved nonpolar region of the protein involved in the catalytic activity of the enzyme. The severe HL deficiency among the three related compound heterozygotes was associated with a marked TG enrichment of LDL and HDL particles. The two men with severe HL deficiency also presented with abdominal obesity, which appeared to amplify the impact of HL deficiency on plasma TG-rich lipoprotein levels. Our results demonstrated that HL deficiency in this Québec kindred is associated with an abnormal lipoprotein-lipid profile, which may vary considerably in the presence of secondary factors such as abdominal obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M200479-JLR200DOI Listing

Publication Analysis

Top Keywords

severe deficiency
12
hepatic lipase
8
lipase deficiency
8
mutation exon
8
abdominal obesity
8
deficiency
7
characterization novel
4
mutation
4
novel mutation
4
mutation causing
4

Similar Publications

Pathogenicity assessment of genetic variants identified in patients with severe hypertriglyceridemia: novel cases of Familial Chylomicronemia Syndrome from the Dyslipidemia Registry of the Spanish Atherosclerosis Society.

Genet Med

January 2025

Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit. Internal Medicine Service. University Hospital Virgen de la Victoria, Málaga, Spain.

Purpose: Genetic testing is required to confirm a diagnosis of familial chylomicronemia syndrome (FCS). We assessed the pathogenicity of variants identified in the FCS canonical genes to diagnose FCS cases.

Methods: 245 patients with severe hypertriglyceridemia underwent next-generation sequencing.

View Article and Find Full Text PDF

A culture model for the assessment of phenylalanine neurotoxicity in phenylketonuria.

In Vitro Model

February 2022

Institute of Cell Biology and Neurobiology, Charité Anatomy, Charité Universitätsmedizin Berlin, Charitéplatz 1 (intern: Virchowweg 6 CCO), 10117 Berlin, Germany.

Objective: Phenylketonuria (PKU) is caused by a specific mutation of the phenylalanine hydroxylase (PAH) gene. The deficiency of PAH results in high phenylalanine levels (Phe), low tyrosine levels (Tyr), and reduced catecholamine neurotransmitters. The majority of PKU patients, if untreated, develop severe mental retardation.

View Article and Find Full Text PDF

Background: The diagnostic criteria of neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) have not been established due to non-specific clinical manifestations, and our understanding on the treatment outcome is still limited. We aim to investigate the biochemical characteristics, genetic variants, and treatment outcome of NICCD patients.

Methods: We compared the nutritional status and biochemical characteristics of 55 NICCD infants and 27 idiopathic neonatal cholestasis (INC) infants.

View Article and Find Full Text PDF

DDB1 prepares brown adipocytes for cold-induced thermogenesis.

Life Metab

August 2022

State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai, China.

Brown adipose tissue (BAT) plays a key role in thermogenesis during acute cold exposure. However, it remains unclear how BAT is prepared to rapidly turn on thermogenic genes. Here, we show that damage-specific DNA binding protein 1 (DDB1) mediates the rapid transcription of thermogenic genes upon acute cold exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!