Recent studies showed lower apolipoprotein A-IV (apoA-IV) plasma concentrations in patients with coronary artery disease (CAD). The actual distribution of the antiatherogenic apoA-IV in human plasma, however, is discussed controversially and it was never investigated in CAD patients. We therefore developed a gentle technique to separate the various apoA-IV-containing plasma fractions. Using a combination of precipitation of all lipoproteins with 40% phosphotungstic acid and 4 M MgCl2, as well as immunoprecipitation of all apoA-I-containing particles with an anti-apoA-I antibody, we obtained three fractions of apoA-IV: lipid-free apoA-IV (about 4% of total apoA-IV), apoA-IV associated with apoA-I (LpA-I:A-IV, 12%), and apoA-I-unbound but lipoprotein-containing apoA-IV (LpA-IV, 84%). We compared these three apoA-IV fractions between 52 patients with a history of CAD and 52 age- and sex-matched healthy controls. Patients had significantly lower apoA-IV levels when compared to controls (10.28 +/- 3.67 mg/dl vs. 11.85 +/- 2.82 mg/dl, P = 0.029), but no major differences for the three plasma apoA-IV fractions. We conclude that our gentle separation method reveals a different distribution of apoA-IV than in many earlier studies. No major differences exist in the apoA-IV plasma distribution pattern between CAD patients and controls. Therefore, the antiatherogenic effect of apoA-IV has to be explained by other functional properties of apoA-IV (e.g., the antioxidative characteristics).

Download full-text PDF

Source
http://dx.doi.org/10.1194/jlr.M300060-JLR200DOI Listing

Publication Analysis

Top Keywords

apoa-iv
15
plasma distribution
8
distribution apoa-iv
8
patients coronary
8
coronary artery
8
artery disease
8
healthy controls
8
apoa-iv plasma
8
antiatherogenic apoa-iv
8
cad patients
8

Similar Publications

Single nucleotide polymorphisms (SNPs) have been associated with the development of cardiovascular diseases (CVDs). This study correlated eight SNPs with the risk factors of CVD in a black elderly population. Genotyping was used to detect eight polymorphisms; rs675 (ApoA-IV), rs699 (Angiotensinogen (AGT)), rs247616 and rs1968905 (Cholesteryl ester transfer protein (CETP)), rs1801278 (Insulin receptor substrate 1 (IRS-1)), rs1805087 (Methylenetetrahydrofolate reductase (MTHFR)) and rs28362286 and rs67608943 (Proprotein convertase subtilisin/kexin type 9 (PCSK9)), as well as their genotypes in deoxyribonucleic acid (DNA) extracted from peripheral blood.

View Article and Find Full Text PDF

Lipid Metabolism Disorders as Diagnostic Biosignatures in Sepsis.

Infect Dis Rep

August 2024

Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany.

Critical illness causes disturbances in lipid metabolism. Here, we investigated the levels of apolipoprotein A-IV (apoA-IV), a regulator of triglyceride and cholesterol metabolism, in human sepsis. ApoA-IV (analyzed in 156 patients with systemic inflammatory response syndrome (SIRS)/sepsis) and cholesteryl ester (CE) (analyzed in 121 of these patients) were lower in patients compared to 43 healthy controls.

View Article and Find Full Text PDF
Article Synopsis
  • Postprandial hypertriglyceridemia (PHTG) is linked to coronary heart disease due to the harmful buildup of chylomicron remnants (CM-Rs) and VLDL remnants (VLDL-Rs), with CM-Rs being less understood.
  • This study successfully isolated CM-Rs and VLDL-Rs from blood samples taken 3 hours after consuming high-fat meals using specialized antibodies and advanced proteomic analysis.
  • Key findings include the identification of 42 associated proteins—11 of which are newly discovered—highlighting specific proteins in CM-Rs that may contribute to their atherogenic nature, thus providing insights into their potential health risks.
View Article and Find Full Text PDF

Apolipoprotein A-IV polymorphisms Q360H and T347S attenuate its endogenous inhibition of thrombosis.

Biochem Biophys Res Commun

June 2024

Department of Physiology, University of Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; CCOA Therapeutics Inc., Toronto, ON, Canada; Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada. Electronic address:

Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbβ3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is highly connected to inflammation and oxidative stress. Both favour the development of cancer in CKD patients. Serum apolipoprotein A-IV (apoA-IV) concentrations are influenced by kidney function and are an early marker of kidney impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!