The aminocoumarin antibiotics novobiocin and clorobiocin contain a 3-dimethylallyl-4-hydroxybenzoate (3DMA-4HB) moiety. The biosynthesis of this moiety has now been identified by biochemical and molecular biological studies. CloQ from the clorobiocin biosynthetic gene cluster in Streptomyces roseochromogenes DS 12976 has recently been identified as a 4-hydroxyphenylpyruvate-3-dimethylallyltransferase. In the present study, the enzyme CloR was overexpressed in Escherichia coli, purified, and identified as a bifunctional non-heme iron oxygenase, which converts 3-dimethylallyl-4-hydroxyphenylpyruvate (3DMA-4HPP) via 3-dimethylallyl-4-hydroxymandelic acid (3DMA-4HMA) to 3DMA-4HB by two consecutive oxidative decarboxylation steps. In 18O2 labeling experiments we showed that two oxygen atoms are incorporated into the intermediate 3DMA-4HMA in the first reaction step, but only one further oxygen is incorporated into the final product 3DMA-4HB during the second reaction step. CloR does not show sequence similarity to known oxygenases. It apparently presents a novel member of the diverse family of the non-heme iron (II) and alpha-ketoacid-dependent oxygenases, with 3DMA-4HPP functioning both as an alpha-keto acid and as a hydroxylation substrate. The reaction catalyzed by CloR represents a new pathway for the formation of benzoic acids in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M303190200 | DOI Listing |
J Med Chem
January 2025
Ma̅tai Ha̅ora - Centre for Redox Biology and Medicine, Department of Biomedical Science and Pathology, University of Otago, Christchurch, Christchurch 8140, New Zealand.
In humans, the 2-oxoglutarate-dependent dioxygenases (2-OGDDs) catalyze hydroxylation reactions involved in cell metabolism, the biosynthesis of small molecules, DNA and RNA demethylation, the hypoxic response and the formation of collagen. The reaction is catalyzed by a highly oxidizing ferryl-oxo species produced when the active site non-heme iron engages molecular oxygen. Enzyme activity is specifically stimulated by l-ascorbic acid (ascorbate, vitamin C), an effect not well mimicked by other reducing agents.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
January 2025
Department of Chemistry, Emory University, Atlanta, GA, USA.
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence the formation of peroxo species bridging metal and substrate.
View Article and Find Full Text PDFNutrients
January 2025
Department of Food & Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.
View Article and Find Full Text PDFChembiochem
January 2025
Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
BTG13, a non-heme iron-dependent enzyme with a distinctive coordination environment of four histidines and a carboxylated lysine, has been found to catalyze the cleavage of the C4a-C10 bond in anthraquinone. Contrary to typical dioxygenase mechanisms, our quantum mechanical/molecular mechanical (QM/MM) calculations reveal that BTG13 functions more like a monooxygenase. It selectively inserts an oxygen atom into the C10-C4a bond, creating a lactone species that subsequently undergoes hydrolysis, leading to the formation of a ring-opened product.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria.
Terminal olefins are important platform chemicals, drop-in compatible hydrocarbons and also play an important role as biocontrol agents of plant pathogens. Currently, 1-alkenes are derived from petroleum, although microbial biosynthetic routes are known. Jeotgalicoccus sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!