A fast, independent dose check of HDR plans.

J Appl Clin Med Phys

Department of Radiation Oncology, The University of Arizona, Tucson, Arizona 85724, USA.

Published: June 2003

High dose rate (HDR) brachytherapy often involves optimization routines to calculate the dwell times and positions of a radioactive source along specified applicator paths. These routines optimize the dwells in such a way as to deliver the prescribed dose at one or more points while satisfying various constraints. The importance of independently verifying the doses calculated by the optimization software prior to treatment delivery has been recognized in various works, and is a requirement of various regulatory agencies. Most previous methods are specific to particular treatment configurations, or require a full replanning of the case. In this work we describe an in-house software which provides an independent verification of dose calculations in less than 3 min, which adds negligible additional waiting time for the patient, regardless of the number of applicators, paths of the applicators, or complexity of the dwell times and positions. In order to verify errors which may occur between the planning and delivery stages, the verification code directly uses the treatment file used to control the HDR afterloader to compute the dose. Since this file references the source positions in the frame of reference of the catheters, an algorithm is described to convert these positions to Cartesian coordinates. We validate the code for various arbitrary cases ranging from a single catheter to complex multicatheter plans, and show results for various clinical plans. The maximum discrepancy observed for these clinical plans is 2%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724475PMC
http://dx.doi.org/10.1120/jacmp.v4i2.2530DOI Listing

Publication Analysis

Top Keywords

dwell times
8
times positions
8
clinical plans
8
dose
5
fast independent
4
independent dose
4
dose check
4
check hdr
4
plans
4
hdr plans
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!