The recently derived nonlocal quantum kinetic equation for dense interacting Fermi systems combines time derivatives with finite time stepping known from the logistic mapping. This continuous delay differential equation is a consequence of the microscopic delay time representing the dynamics of the deterministic chaotic system. The responsible delay time is explicitly calculated and discussed for short-range correlations. As a novel feature oscillations in the time evolution of the distribution function itself appear and bifurcations up to chaotic behavior occur. The temperature and density conditions are presented where such oscillations and bifurcations arise indicating an onset of phase transition.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1576209DOI Listing

Publication Analysis

Top Keywords

kinetic equation
8
interacting fermi
8
fermi systems
8
delay time
8
time
5
bifurcation kinetic
4
equation interacting
4
systems derived
4
derived nonlocal
4
nonlocal quantum
4

Similar Publications

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

This study examines the behavior of the Casson nanofluid bioconvection flow around a spinning disc under various influences, including gyrotactic microorganisms, multiple slips, and thermal radiation. Notably, it accounts for the reversible nature of the flow and incorporates the esterification process. The aim of this study is to investigate the influence of reversible chemical reactions on the flow behavior of a Casson nanofluid in the presence of bioconvective microorganisms over a spinning disc.

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

How hydrodynamic conditions drive the regime shift towards a bacterial state with lower carbon emissions in river bends.

Environ Res

January 2025

Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P.R. China.

Hydrodynamic conditions influenced by river sinuosity may alter carbon (e.g., carbon dioxide and methane) emissions and microbial communities responsible for nutrient turnover.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!