Improving visibility depth in passive underwater imaging by use of polarization.

Appl Opt

School of Electrical and Electronic Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.

Published: May 2003

Results are presented that demonstrate the effectiveness of using polarization discrimination to improve visibility when imaging in a scattering medium. The study is motivated by the desire to improve visibility depth in turbid environments, such as the sea. Most previous research in this area has concentrated on the active illumination of objects with polarized light. We consider passive or ambient illumination, such as that deriving from sunlight or a cloudy sky. The basis for the improvements in visibility observed is that single scattering by small particles introduces a significant amount of polarization into light at scattering angles near 90 degrees: This light can then be distinguished from light scattered by an object that remains almost completely unpolarized. Results were obtained from a Monte Carlo simulation and from a small-scale experiment in which an object was immersed in a cell filled with polystyrene latex spheres suspended in water. In both cases, the results showed an improvement in contrast and visibility depth for obscuration that was due to Rayleigh particles, but less improvement was obtained for larger scatterers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ao.42.002794DOI Listing

Publication Analysis

Top Keywords

visibility depth
12
improve visibility
8
improving visibility
4
depth passive
4
passive underwater
4
underwater imaging
4
imaging polarization
4
polarization presented
4
presented demonstrate
4
demonstrate effectiveness
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!