The evolution of plants that provide no form of reward for their pollinators is puzzling because they receive low numbers of pollinator visits and so have low reproductive success. To predict the evolutionary dynamics of empty morphs within a plant population, we modeled different foraging strategies that pollinators could use to avoid them. We predicted that the optimal strategy was to visit empty inflorescences randomly when these were infrequent but to use strategies such as visiting fewer flowers per inflorescence to avoid wasting time on them. As the frequencies of empty inflorescences increased, discriminating directly against empty morphs was more likely to be an optimal strategy than was avoiding the species altogether and switching to an alternative one. An experimental test of this model using artificial inflorescences showed that bumblebees used a variety of strategies to minimize time wasted on empty inflorescences. They showed weak discrimination against empty inflorescences but switched to an alternative type of inflorescence as the frequency of empty inflorescences increased. We predicted that empty morphs would be at a visitation rate disadvantage even when at low frequencies in a plant population. Differences in outcrossing rates, or male function, may explain how rewardlessness spreads in a plant population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/368347 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!