The goal of this study was to determine the duration of time that ligaments from a study group need to be loaded in order to adequately determine their collective viscoelastic behavior. Rat ligaments were subjected either to creep or stress relaxation for 1,000 s or stress relaxation for 10,000 s to compare estimates of viscoelastic behavior for different test durations. Stresses versus time (relaxation) or strains versus time (creep) were fit with power law models (tbeta where beta is the rate of creep or relaxation on a log-log scale). Time intervals were separated by logarithmic decade and analyzed using a Random Coefficients approach to compute residual specimen error as a function of the number of decades of data analyzed. Standard Regression was also used for comparison. Results show that by testing for =100 s (i.e. two logarithmic decades of time) offers 1% less accuracy than testing for 1,000 seconds (i.e. three decades) when estimating the viscoelastic behavior of a specimen. These 100 s power law estimates are far more accurate than the between specimen dispersion of viscoelastic properties. Hence, a better way to compare viscoelastic behavior between study groups is to test more specimens for shorter durations. This reduces experimental time per sample and therefore increases efficiency.
Download full-text PDF |
Source |
---|
Pharm Res
January 2025
Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
Purpose: The purpose of this research was to develop and characterize dual-drug Isoniazid-Pyridoxine gummies using Semisolid Extrusion (SSE) 3D printing technology, aimed at personalized dosing for a broad patient demographic, from pediatric to geriatric. This study leverages SSE 3D printing, an innovative approach in personalized medicine, to enable precise dose customization and improve patient adherence. By formulating dual drug-loaded gummies, the research addresses the challenges of pill burden and poor palatability associated with traditional tuberculosis regimens, ultimately enhancing the therapeutic experience and effectiveness for patients across various age groups.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
The human patellar tendon contains distinct fascicle bundles across its mediolateral and anteroposterior regions. Studies have suggested region-specific behaviour during in vivo actions, but it is unclear whether such regional differences result from localized variation in composition and mechanical properties within the tendon itself. Furthermore, the viscoelastic properties of any region of the human patellar tendon have not been well described previously.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physical Chemistry, Sciences II, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland.
The formation of protein condensates (droplets) via liquid-liquid phase separation (LLPS) is a commonly observed phenomenon in vitro. Changing the environmental properties with cosolutes, molecular crowders, protein partners, temperature, pressure, etc. has been shown to favor or disfavor the formation of protein droplets by fine-tuning the water-water, water-protein, and protein-protein interactions.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Cellulose Research Unit, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
Hydroxypropyl cellulose (HpC) forms a liquid crystalline phase and is thought to have a rod-like shape in aqueous solution. The viscoelastic behaviors of aqueous solutions of HpC samples with average molar substitution numbers ( ∼ 3.8) and weight-average molar masses ( = 36-740 kg mol) were examined over a wide concentration () range, and the results were discussed based on a concept of rod particle suspension rheology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!