Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of nitric oxide (NO) in pulmonary disease has been controversial with both antiinflammatory (scavenging radicals and inhibiting NF-êB activation) and proinflammatory (forming highly reactive peroxynitrite and augmenting NF-êB activation by inflammatory agents) actions reported. Therefore, a study has been initiated to determine whether deletion of the inducible nitric oxide synthase (iNOS) gene in the C57BL/6J mouse alters the pulmonary macrophage response to lipopolysaccharide (LPS) or silica. The objective of the initial phase of this study was to determine the difference in responsiveness of alveolar macrophages (AMs), harvested from naive wild-type (WT) or iNOS knockout (iNOS KO) mice, to an in vitro LPS or silica exposure. Primary AMs were obtained by bronchoalveolar lavage (BAL) from age- and weight-matched iNOS KO and WT mice. The cells were treated with interferon-gamma (IFN-ã) (50 U/ml), IFN-ã (50 U/ml) + LPS (1 microg/ml), LPS (0.01-100 microg/ml), or silica (25-250 microg/ml). The following parameters were measured: nitrate and nitrite (NOx), tumor necrosis factor-á (TNF-á), macrophage inflammatory protein-2 (MIP-2), intracellular generation of the reactive oxygen species (ROS) hydrogen peroxide (H(2)O(2) and superoxide (O(*-2)), and basal (unstimulated) total antioxidant capacity. Data show a significant increase in NOx production upon exposure to IFN-ã +/- LPS in the WT but not iNOS KO AMs. NOx production by iNOS KO or WT AMs was not altered by in vitro exposure to LPS or silica alone. LPS, but not silica, induced TNF-á and MIP-2 production in both iNOS KO and WT AMs. Statistical analysis of concentration response curves found a significant tendency for greater mediator production in the iNOS KO versus WT AMs. Basal intracellular production of H(2)O(2) and O(*- 2) was significantly greater in the iNOS KO compared to WT AMs. In contrast, LPS- (10 microg/ml) or silica- (100 microg/ml) stimulated intracellular oxidant production was lower in iNOS KO AMs, but overall (basal + stimulated) inflammatory capacity was similar between the cell types. The basal total antioxidant production of the iNOS KO AMs was approximately twofold higher than the WT AMs. In conclusion, certain compensatory changes appear to occur in AMs from iNOS KO mice. In response to the inability to induce NO production, iNOS KO AMs exhibit significantly higher basal generation of H(2)O(2) and (O(*- 2)) as well as higher total antioxidant levels. In addition, LPS induced TNF-á and MIP-2 production tend to be higher in AMs from iNOS KO mice. Such compensatory changes in the AM response may affect the response of iNOS KO mice to inflammatory exposures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287390306395 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!