Purpose: The effects of low-level radiofrequency radiation (RFR) on ultraviolet (UV)-induced skin tumorigenesis were evaluated in ornithine decarboxylase (ODC) and non-transgenic mice.
Materials And Methods: Transgenic female mice over-expressing the human ODC gene and their non-transgenic littermates (20 animals in the cage control group, and 45-49 animals in the other groups) were exposed for 52 weeks to UV radiation or a combination of UV radiation and pulsed RFR. The UV dose was 240 Jm(-2) (1.2 x human minimum erythemal dose) delivered three times a week. One group of animals was exposed to Digital Advanced Mobile Phone System (DAMPS)-type RFR, the other group to Global System for Mobile (GSM)-type RFR at a nominal average specific absorption rate of 0.5 W kg(-1), 1.5 h day(-1), for 5 days a week. The skin was carefully palpated weekly for macroscopic tumours. Histopathological analyses of all skin lesions and of a specified dorsal skin area were performed on all animals.
Results: UV exposure resulted in development of macroscopic skin tumours in 11.5 and 36.8% of non-transgenic and transgenic animals, respectively. The RFR exposures did not give a statistically significant effect on the development of skin tumours in either transgenic or non-transgenic animals, or in combined analysis, but tumour development appeared slightly accelerated especially in non-transgenic animals. No effects of RFR exposures were found on excretion of 6-hydroxymelatonin sulphate into urine or on polyamine levels in dorsal skin.
Conclusion: RFR exposures did not significantly enhance skin tumourigenesis. However, the slightly accelerated tumour development may warrant further evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0955300031000096298 | DOI Listing |
Plants (Basel)
November 2024
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain.
Plants of several species, including crops, change their volatilome when exposed to a low ratio of red to far-red light (low R/FR) that informs about the presence of nearby plants (i.e., proximity shade).
View Article and Find Full Text PDFJ Sex Med
January 2025
Department of Women's and Children's Health, Uppsala University, 752 37, Sweden.
Turk J Med Sci
September 2024
Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkiye.
Background/aim: Primarily due to wireless communication devices, especially mobile phones, there has been a steady rise in the intensity of nonionizing radiofrequency radiation (RFR). In recent years, increased human health problems raised concerns about whether there is a positive relationship between intense exposure to RFR and public health. The present study aims to investigate the effects of GSM-like RFR exposure on the male reproductive system and the impact of melatonin treatment (synergistic, antagonist, or additive).
View Article and Find Full Text PDFHistochem Cell Biol
October 2024
Departments of Histology and Embryology, Faculty of Engineering, Akdeniz University, Antalya, Turkey.
Long-term radiofrequency radiation (RFR) exposure, which adversely affects organisms, deteriorates testicular functions. Misfolding or unfolding protein accumulation in the endoplasmic reticulum (ER) initiates an intracellular reaction known as ER stress (ERS), which activates the unfolded protein response (UPR) for proteostasis. Since both RFR exposure and ERS can cause male infertility, we hypothesized that RFR exposure causes ERS to adversely affect testicular functions in rats.
View Article and Find Full Text PDFPLoS One
May 2024
Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India.
A growing threat to male infertility has become a major concern for the human population due to the advent of modern technologies as a source of radiofrequency radiation (RFR). Since these technologies have become an integral part of our daily lives, thus, it becomes necessary to know the impression of such radiations on human health. In view of this, the current study aims to focus on the biological effects of radiofrequency electromagnetic radiations on mouse Leydig cell line (TM3) in a time-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!