A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biosynthesis of pyridoxine in Saccharomyces cerevisiae--origin of the pyridoxine nitrogen atom differs under anaerobic and aerobic conditions. | LitMetric

Biosynthesis of pyridoxine in Saccharomyces cerevisiae--origin of the pyridoxine nitrogen atom differs under anaerobic and aerobic conditions.

J Nutr Sci Vitaminol (Tokyo)

School of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan.

Published: December 2002

The amide nitrogen atom of glutamine is incorporated into pyridoxine in four eukaryotes (i.e., Emericella nidulans, Mucor racemosus, Neurospora crassa and Saccharomyces cerevisiae) and two prokaryotes (i.e., Staphylococcus aureus and Bacillus subtilis). However, in the prokaryotes Pseudomonas putida, Enterobacter aerogenes and Escherichia coli, it is the nitrogen atom of glutamate that is incorporated into pyridoxine (J Nutr Sci Vitaminol (2000) 46, 55-57). As these results were from experiments conducted under aerobic conditions, we investigated the biosynthesis of pyridoxine on S. cerevisiae under anaerobic conditions. The results showed that [amide-15N]L-glutamine was not incorporated into pyridoxine, unlike the results for aerobic conditions. The incorporation of [15N]ammonium salts into pyridoxine was not inhibited in the presence of casamino acids and tryptophan. The results showed that the nitrogen atoms of amino acids are not used for the biosynthesis of pyridoxine. The incorporation of 15N into pyridoxine was inhibited in the presence of adenine, but not in that of hypoxanthine. Thus, the nitrogen atom of pyridoxine may be from the amino group attached to the C-6 of adenine.

Download full-text PDF

Source
http://dx.doi.org/10.3177/jnsv.48.448DOI Listing

Publication Analysis

Top Keywords

nitrogen atom
16
biosynthesis pyridoxine
12
aerobic conditions
12
incorporated pyridoxine
12
pyridoxine
9
pyridoxine inhibited
8
inhibited presence
8
nitrogen
5
pyridoxine saccharomyces
4
saccharomyces cerevisiae--origin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!