Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply.

Environ Sci Technol

Groundwater Protection and Restoration Group, Department of Civil and Structural Engineering, University of Sheffield, United Kingdom.

Published: May 2003

A novel combination of noninvasive imaging with an oxygen sensitive fluorescent indicator was developed to investigate the biodegradation processes occurring at the fringe of a solute plume, where the supply of oxygen was limited. A thin transparent porous matrix (156 x 120 x 3 mm) was made from quartz plates and quartz sand (212-300 microm) and enriched with acetate-degrading bacteria. A degrading plume developed from a continuous acetate source in the uniform flow field containing dissolved oxygen. Ruthenium (II)-dichlorotris(1,10-phenanthroline) (Ru(phen)3Cl2), a water-soluble fluorescent dye, was used as an indicator of dissolved oxygen. The fluorescence intensity was dependent on the concentration of oxygen because the dissolved oxygen acted as collisional quencher. The oxygen distribution was interpreted from images recorded by a CCD camera. These two-dimensional experimental results showed quantitatively how the oxygen concentrations decreased strongly at the narrow plume fringe and that oxygen was depleted at the core of the plume. Separately, dispersivity was measured in a series of nonreactive transport experiments, and biodegradation parameters were evaluated by batch experiments. Two-dimensional numerical simulations with MT3D/RT3D used these parameters, and the predicted oxygen distributions were compared with the experimental results. This measurement method provides a novel approach to investigate details of solute transport and biodegradation in porous media.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es020128bDOI Listing

Publication Analysis

Top Keywords

dissolved oxygen
16
oxygen
10
investigate biodegradation
8
plume
5
dissolved
4
oxygen imaging
4
imaging porous
4
porous medium
4
medium investigate
4
biodegradation
4

Similar Publications

As transitional ecosystems between land and sea, estuaries are characterized by a unique environment that supports complex and diverse microbial communities. A comprehensive analysis of microbial diversity and ecological processes at different trophic levels is crucial for understanding the ecological functions of estuarine ecosystems. In this study, we systematically analyzed the diversity patterns, community assembly, and environmental adaptability of bacterial and protist communities using high-throughput sequencing techniques.

View Article and Find Full Text PDF

Background: Hypoxia triggers stress, leading to significant alterations in gene expression patterns, which in turn affect fish's growth and development. Real-time quantitative PCR (RT-qPCR) is a pivotal technique for assessing changes in gene expression. However, its accuracy is highly contingent upon the stable expression of reference genes.

View Article and Find Full Text PDF

Effects of Different River Crab Polyculture Practices on Bacterial, Fungal and Protist Communities in Pond Water.

Biomolecules

December 2024

Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.

Microorganisms, including bacteria, fungi, and protists, are key drivers in aquatic ecosystems, maintaining ecological balance and normal material circulation, playing vital roles in ecosystem functions and biogeochemical processes. To evaluate the environmental impact of different river crab polyculture practices, we set up two different river crab () polyculture practices: one where river crabs were cultured with mandarin fish (), silver carp (), and freshwater fish stone moroko (), and another where river crabs were cultured just with mandarin fish and silver carp. These two polyculture practices were referred to as PC and MC, respectively.

View Article and Find Full Text PDF

Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation-maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig-Marikina-San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29).

View Article and Find Full Text PDF

This study aims to determine the spatial distribution of heavy metal pollution in Ermenek Dam Lake, water quality assessment and pollution sources. For this purpose, samples were taken 6 times a year from 12 points determined in 2024. Physico-chemical parameters and heavy metals were analyzed in the study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!