Agrin is a large extracellular matrix protein that plays a key role in the formation and maintenance of the vertebrate neuromuscular junction. The amino acid sequence of agrin encodes a protein with a molecular size of 220 kDa, whereas SDS-PAGE shows a diffuse band around 400 kDa. Further studies showed that agrin is highly glycosylated and belongs to the family of heparan sulfate proteoglycans. By expressing different protein fragments, we localized the glycosaminoglycan (GAG) attachment sites to two locations within the agrin molecule. One site that is located between the seventh and eight follistatin-like domain includes 3 closely spaced serine-glycine (SG) consensus sequences and carries exclusively heparan sulfate side chains. The second site is located further downstream in the centrally located serine-threonine-rich domain and contains a cluster of 4 closely packed SG consensus sequences. This site predominantly carries chondroitin sulfate side chains. Investigating the contribution of individual serines in GAG priming by site-directed mutagenesis showed that each serine of the two SG clusters has the potential to carry GAGs. In accordance with the mixed GAG glycosylation of agrin peptide fragments, it was found that recombinant and in vivo-derived full-length agrin are not exclusively heparan sulfate proteoglycans but also carry chondroitin sulfate side chains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M212676200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!