Induction and execution of apoptosis programs are generally believed to be mediated through a hierarchy of caspase activation. By using two cellular variants obtained from the L1210 cell line (L1210/S and L1210/0), we have shown previously that staurosporine induces apoptotic cell death through both caspase-dependent and caspase-independent pathways. Both pathways normally coexisted in L1210/S cells, whereas L1210/0 cells lacked the ability to activate caspases despite the confirmed presence of both procaspase-3 and -9. Here we show that this defect in caspase activation is not due to mechanisms such as an absence of cytochrome c release, the expression of non-functional caspases, or the presence of an endogenous inhibitor but results from the loss of apoptosis protease activator protein-1 (APAF-1) expression. This absence of APAF-1 protein results from multiple alterations at both genomic and transcriptional levels. However, although this lack of APAF-1 delays the apoptotic program, it does not hamper its execution. Importantly, in these cells, apoptosis develops not only in an APAF-1-independent way but also in the absence of caspase-3 and -9 activation. Altogether these findings provide evidence that apoptosis may occur through alternative signaling pathways independent of APAF-1 expression and totally dissociated from any caspase processing. Therefore, the L1210/0 variant sub-line provides a valuable tool for the elucidation of these pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M302924200DOI Listing

Publication Analysis

Top Keywords

caspase activation
8
apaf-1 expression
8
apoptosis
5
apaf-1
5
apoptosome-independent pathway
4
pathway apoptosis
4
apoptosis biochemical
4
biochemical analysis
4
analysis apaf-1
4
apaf-1 defects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!