AI Article Synopsis

  • Twelve prodrugs of 5-aminobenz[e]indoline class were synthesized and tested for gene-directed enzyme prodrug therapy (GDEPT) using E. coli B's nitroreductase enzyme.
  • Different human, Chinese hamster, and murine cell lines were evaluated for the prodrugs' effectiveness, showing promising results in human cells with specific side chains enhancing NTR selectivity.
  • While the 2-hydroxyethoxy analogue demonstrated some activity in tumors with about 10% NTR+ve cells, the overall effects were not statistically significant compared to existing dinitrobenzamide drugs, indicating a need for improved pharmacokinetics for future development.

Article Abstract

Twelve substituted 4-nitrobenzyl carbamate prodrugs of the 5-aminobenz[e]indoline class of DNA minor groove alkylating agents were prepared and tested as prodrugs for gene-directed enzyme prodrug therapy (GDEPT) using a two-electron nitroreductase (NTR) from E. coli B. The prodrugs and effectors were tested in a cell line panel comprising parental and transfected human (SKOV/Skov-NTR(neo), WiDr/WiDr-NTR(neo)), Chinese hamster (V79(puro)/V79-NTR(puro)), and murine (EMT6/EMT6-NTR(puro)) cell line pairs. In the human cell line pairs, several analogues bearing neutral methoxyethoxy-, 2-hydroxyethoxy-, or 3-hydroxypropoxy-substituted side chains were good substrates for NTR as measured by cytotoxicity ratios, with NTR-ve/NTR+ve ratios similar to the established NTR substrates CB1954 (an aziridinyl dinitrobenzamide) and the analogous bromomustard. Selectivity for NTR decreased with increasing side-chain size or the presence of a basic amine group. Low to modest selectivity was observed in the Chinese hamster-derived cell line pair; however, in the murine EMT6/EMT6-NTR(puro) cell line pair, the above hydroxyalkoxy analogues again showed significant selectivity for NTR. The activity of the 2-hydroxyethoxy analogue was evaluated against NTR-expressing EMT6 tumors comprising ca. 10% NTR+ve cells at the time of tumor treatment. A small decrease in NTR+ve cells was observed after treatment, with a lesser effect against NTR-ve target cells, but these effects were not statistically significant and were much less than for the dinitrobenzamides. These results suggest that useful GDEPT prodrugs based on the 4-nitrobenzyl carbamate and 5-aminobenz[e]indoline motifs may be developed if optimization of pharmacokinetics can be addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0205191DOI Listing

Publication Analysis

Top Keywords

minor groove
8
groove alkylating
8
alkylating agents
8
4-nitrobenzyl carbamate
8
murine emt6/emt6-ntrpuro
8
emt6/emt6-ntrpuro cell
8
cell pairs
8
selectivity ntr
8
cell pair
8
ntr+ve cells
8

Similar Publications

MGB probe-based multiplex droplet digital PCR for the interspecific identification of Notopterygii Rhizoma et Radix in herbal materials and preparations.

Phytomedicine

December 2024

State Key Laboratory of Drug Regulatory Science, Beijing 102629, China; Chinese Pharmacopoeia Commission, Beijing 100061, China. Electronic address:

Background: Owing to high sensitivity and ability for absolute quantification, the droplet digital polymerase chain reaction (ddPCR) is widely used for viral and bacterial detection. However, few studies have been conducted on the application of ddPCR to identify the original plant species used in traditional Chinese medicine and Chinese patent medicine.

Purpose: In this study, we investigated the feasibility of using ddPCR to differentiate between Notopterygium incisum and N.

View Article and Find Full Text PDF

Investigation of the impact of R273H and R273C mutations on the DNA binding domain of P53 protein through molecular dynamic simulation.

J Biomol Struct Dyn

February 2025

Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.

The P53 protein, a cancer-associated transcriptional factor and tumor suppressor, houses a Zn ion in its DNA-binding domain (DBD), essential for sequence-specific DNA binding. However, common mutations at position 273, specifically from Arginine to Histidine and Cysteine, lead to a loss of function as a tumor suppressor, also called DNA contact mutations. The mutant (MT) P53 structure cannot stabilize DNA due to inadequate interaction.

View Article and Find Full Text PDF

Histone N-tails modulate sequence-specific positioning of nucleosomes.

J Biol Chem

December 2024

National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Spatial organization of chromatin is essential for cellular functioning. However, the precise mechanisms governing sequence-dependent positioning of nucleosomes on DNA still remain unknown in detail. Existing algorithms, taking into account the sequence-dependent deformability of DNA and its interactions with the histone globular domains, predict rotational setting of only 65% of human nucleosomes mapped in vivo.

View Article and Find Full Text PDF

Structural investigation of erdafitinib, an anticancer drug, with ctDNA: A spectroscopic and computational study.

Biochim Biophys Acta Gen Subj

December 2024

Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India. Electronic address:

The interaction of drugs with DNA is crucial for understanding their mechanism of action, particularly in the context of gene expression regulation. Erdafitinib (EDB), a pan-FGFR (fibroblast growth factor receptor) inhibitor approved by the FDA, is a potent anticancer agent used primarily in the treatment of urothelial carcinoma. In this study, the binding interaction between EDB and calf thymus DNA (ctDNA) was assessed using molecular docking, UV-absorption spectroscopy, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy.

View Article and Find Full Text PDF

The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!