Novel benzoylalanine-derived ketoamides were prepared and evaluated for calpain I inhibition. Derivatives carrying vinylbenzyl amino residues in the P(2)-P(3) region inhibited calpain in nanomolar concentrations and thus represent a novel class of nonpeptidic calpain inhibitors. Selected examples exhibited an improved pharmacokinetic profile including improved water-solubility and metabolic stability. In particular, these calpain inhibitors showed oral bioavailability in rats as demonstrated by N-(1-benzyl-2-carbamoyl-2-oxoethyl)-2-[E-2-(4-diethylaminomethylphenyl)ethen-1-yl]benzamide (5d). The closely related derivative N-(1-carbamoyl-1-oxohex-1-yl)-2-[E-2-(4-dimethylaminomethylphenyl)-ethen-1-yl]benzamide (5b) was evaluated for neuroprotective efficacy after experimental traumatic brain injury in a fluid percussion model in rats. When administered after injury, 5b reduced the number of damaged neurons by 41%, and this result would be in line with the suggested neuroprotective efficacy of calpain inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm0210717DOI Listing

Publication Analysis

Top Keywords

calpain inhibitors
12
benzoylalanine-derived ketoamides
8
carrying vinylbenzyl
8
vinylbenzyl amino
8
amino residues
8
inhibitors oral
8
oral bioavailability
8
calpain inhibition
8
neuroprotective efficacy
8
calpain
6

Similar Publications

Chronic exposure to manganese compounds leads to accumulation of the manganese in the basal ganglia and hippocampus. High levels of manganese in these structures lead to oxidative stress, neuroinflammation, imbalance of brain neurotransmitters, and hyperactivation of calpains mediating neurotoxicity and causing motor and cognitive impairment. The purpose of this work was to study the effect of excess manganese chloride intake on rats' spatial memory and on dopamine-β-hydroxylase (DβH) activity under conditions of calpain activity suppression.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (CDK5) inhibitors in Parkinson disease.

J Cell Mol Med

June 2024

Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt.

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions.

View Article and Find Full Text PDF

This study aimed to investigate the effects of the calpain inhibitor N-Acetyl-Leu-Leu-norleucinal (ALLN) on neuroapoptotic cell damage caused by Copper Oxide Nanoparticles (CuO-NP) and exacerbation of damage through brain ischemia/reperfusion (I/R) in a rat model. Male Wistar Albino rats (n=80) were divided into eight groups: Control, I/R, CuO-NP, CuO-NP+I/R, I/R+ALLN, CuO-NP+ALLN, CuO-NP+I/R+ALLN, and DMSO. Biochemical markers (MBP, S100B, NEFL, NSE, BCL-2, Cyt-C, Calpain, TNF-α, Caspase-3, MDA, and CAT) were measured in serum and brain tissue samples.

View Article and Find Full Text PDF

Unlabelled: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, much effort has been dedicated to identifying effective antivirals against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of calpain inhibitors show excellent antiviral activities against SARS-CoV-2 by targeting the viral main protease (M), which plays an essential role in processing viral polyproteins. In this study, we found that calpain inhibitors potently inhibited the infection of a chimeric vesicular stomatitis virus (VSV) encoding the SARS-CoV-2 spike protein but not M.

View Article and Find Full Text PDF
Article Synopsis
  • Autophagy plays a crucial role in protecting podocytes from damage in diabetic kidney disease (DKD), and restoring this process could help mitigate DKD progression.
  • * The study identifies a mechanism where TRPC6 induces calpain activation in podocytes, impairing their autophagy and leading to increased injury and DKD severity.
  • *Inhibition of calpain can restore podocyte autophagy and protect kidney function, suggesting potential therapeutic targets for treating DKD.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!