Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The forces and torques that occur during walking gait, particularly during toe-off, promote articulation in the posteromedial quadrant of tibial inserts. Retrieved components of failed knee arthroplasties show ultrahigh molecular weight polyethylene damage patterns in this region. Component-designed constraint, compromised polymer, and surgical factors account for these observations. The current authors compare the contact stresses that developed on four implant designs during toe-off for optimally aligned and externally torqued components using the finite element method. Under 16 N-m of torque, the four designs studied varied regarding their centers of rotation and magnitude of external rotation, which are related directly to their specific articulating surface geometry. Designs with conforming condylar geometry had greater rotational constraint and therefore, less external rotation. These conforming designs offer the benefits of lower stresses and tend to limit contact near the edge of the plateau. However, because of their increased rotational constraint, torque is transmitted more readily to the implant-bone interface, increasing the potential for implant loosening. The data presented serve as an indicator of the potential for polyethylene tibial component surface damage and define the role that implant geometry plays in resisting external rotation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.blo.0000063597.67412.e9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!