Purpose: We have extended our previous observation that the percent occurrence of calcium oxalate stones decreased while that of calcium phosphate stones increased with each new stone event.

Materials And Methods: The National VA Crystal Identification Center has analyzed veteran patient urinary tract stones from VA hospitals throughout the United States since 1983. We reviewed the composition of 33,198 stones with emphasis on the changes in composition. More than 11,786 stones came from 5,088 recurrent stone formers. Stones were analyzed using high resolution x-ray powder diffraction and Fourier transform infrared spectroscopic techniques. When the stones were investigated as a function of time, it was determined that there was greater variability when samples were more than 30 days apart.

Results: The percent occurrence of whewellite, weddelite, apatite, brushite and uric acid in stones increased between 1.0% and 5.9% since our previous study. The percent occurrence of struvite decreased by 2.6%. The percent of calcium oxalate stones decreased while that of calcium phosphate stones increased with each new event. However, the total percent occurrence of all calcium containing stones did not significantly change with recurrent stone events.

Conclusions: Our study suggests a strong trend for the conversion of stone disease from calcium oxalate to calcium phosphate containing stones, which could influence the progression and severity of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.ju.0000065592.55499.4eDOI Listing

Publication Analysis

Top Keywords

calcium oxalate
16
calcium phosphate
16
percent occurrence
16
recurrent stone
12
stones
12
phosphate stones
12
stones increased
12
calcium
8
oxalate calcium
8
occurrence calcium
8

Similar Publications

Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.

View Article and Find Full Text PDF

Vitamin C is an antioxidant and is essential for immune function and infection resistance. Supplementation is necessary when a sufficient amount of vitamin C is not obtained through the diet. Alternative formulations of vitamin C may enhance its bioavailability and retention over traditional ascorbic acid.

View Article and Find Full Text PDF

Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.

View Article and Find Full Text PDF

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Unlabelled: is the causal agent of stem rot of many crops, a highly destructive disease of groundnut ( L). Based on evidence that many groundnut genotypes have an inherent ability to tolerate the pathogenicity of species, twenty-two genotypes of groundnut were screened against infection in sick plot field experiment; four genotypes, namely CS19, GG16, GG20 and TG37A, were selected as being the most tolerant, moderately tolerant, susceptible and highly susceptible to stem rot, respectively. Stem tissues (1cm from the collar region) from infected and healthy plants of four selected genotypes differing in susceptibility were examined using a scanning electron microscope (SEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!