Double-stranded short interfering RNAs (siRNA) induce post-transcriptional silencing in a variety of biological systems. In the present study we have investigated the structural requirements of chemically synthesised siRNAs to mediate efficient gene silencing in mammalian cells. In contrast to studies with Drosophila extracts, we found that synthetic, double-stranded siRNAs without specific nucleotide overhangs are highly efficient in gene silencing. Blocking of the 5'-hydroxyl terminus of the antisense strand leads to a dramatic loss of RNA interference activity, whereas blocking of the 3' terminus or blocking of the termini of the sense strand had no negative effect. We further demonstrate that synthetic siRNA molecules with internal 2'-O-methyl modification, but not molecules with terminal modifications, are protected against serum-derived nucleases. Finally, we analysed different sets of siRNA molecules with various 2'-O-methyl modifications for stability and activity. We demonstrate that 2'-O-methyl modifications at specific positions in the molecule improve stability of siRNAs in serum and are tolerated without significant loss of RNA interference activity. These second generation siRNAs will be better suited for potential therapeutic application of synthetic siRNAs in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156727 | PMC |
http://dx.doi.org/10.1093/nar/gkg393 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Internal Medicine III, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.
Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea; Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea. Electronic address:
Background And Aims: Vascular smooth muscle cells are pivotal in atherosclerosis, transitioning from a contractile to a synthetic phenotype, which is associated with increased proliferation and inflammation. FRZB, a Wnt signaling modulator, has been implicated in vascular pathology, but its specific role in vascular smooth muscle cell phenotype modulation is not well understood. This study investigates the role of FRZB in regulating vascular smooth muscle cell phenotypes.
View Article and Find Full Text PDFMolecules
December 2024
Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
Therapeutic nucleic acids (TNAs) including antisense oligonucleotides (ASOs) and small interfering RNA (siRNA) have emerged as promising treatment strategies for a wide variety of diseases, offering the potential to modulate gene expression with a high degree of specificity. These small, synthetic nucleic acid-like molecules provide unique advantages over traditional pharmacological agents, including the ability to target previously "undruggable" genes. Despite this promise, several biological barriers severely limit their clinical efficacy.
View Article and Find Full Text PDFExp Mol Med
January 2025
Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer.
View Article and Find Full Text PDFNat Plants
January 2025
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!