During normal postnatal development, rat soleus (SOL) muscle fibers undergo a dramatic fast-to-slow myosin heavy chain (MyHC) isoform transformation. We exploited this phenomenon to evaluate the role of neurotrophin 4/5 (NT-4/5) in the regulation of muscle fiber phenotype. Intramuscular injections of recombinant NT-4/5 into the SOL muscle of rat neonates significantly accelerated the normal fast-to-slow MyHC isoform transformation. Sequestration of endogenous NT-4/5 with TrkB-IgG prevented this transformation from occurring. Administration of the other TrkB ligand, brain-derived neurotrophic factor (BDNF), did not affect the normal course of the MyHC isoform transformation in this muscle, indicating that the observed effect is NT-4/5 specific. Botulinum toxin blockade of synaptic transmission significantly disrupted the normal fast-to-slow MyHC isoform switch. Because administration of NT-4/5 to paralyzed muscles failed to restore the normal course of this MyHC transformation, we believe that the effect of NT-4/5 is not directly on the muscle fibers but that it probably activates or forms a type of retrograde signal to motoneurons. The developmental upregulation of NT-4/5 mRNA in rat SOL muscle fibers occurred earlier than the upregulation of MyHC I/b mRNA associated with muscle fiber transformation. This timing is consistent with the idea that NT-4/5 is involved in early events that lead to the upregulation of the slow MyHC isoform in this muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.00412 | DOI Listing |
J Voice
January 2025
Department of Communication Sciences and Disorders, The University of Iowa, Iowa City, IA.
Introduction: Laryngeal muscle physiology is integral to many speech, voice, swallowing, and respiratory functions. A key determinant of a muscle's contractile properties, including its fatigue profile and capacity for force production, is the myosin heavy chain (MyHC) isoform that predominates in the muscle. This study surveys literature on the MyHC compositions of mammalian intrinsic laryngeal skeletal muscle to illustrate trends and gaps in laryngeal muscle fiber typing techniques, models, and concepts.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Surgery, Division of Otolaryngology, University of Wisconsin, Madison, WI, United States.
Introduction: Down syndrome (DS) is associated with difficulties with feeding during infancy and childhood. Weaning, or transitioning from nursing to independent deglutition, requires developmental progression in tongue function. However, little is known about whether postnatal tongue muscle maturation is impacted in DS.
View Article and Find Full Text PDFMeat Sci
March 2025
Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322, United States. Electronic address:
This study assessed postmortem proteolysis over 14 d in bovine Masseter (MS), Longissimus thoracis (LT), and Cutaneous trunci (CT) muscles. First, the metabolic, contractile, and connective tissue properties were characterized to establish their intrinsic differences. The MS contained the highest levels of oxidative markers and myosin heavy chain-I (MyHC-I), whereas the CT possessed the greatest glycolytic capacity, MyHC-IIx, and connective tissue proteins (P < 0.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China. Electronic address:
Beef quality is a critical factor in evaluating the effectiveness of beef cattle production. Fiber types play key roles in determining muscle growth and meat quality characteristics. FHL3 is de novo expressed in skeletal muscle and is responsible for MyHC isoform expression in C2C12 cells.
View Article and Find Full Text PDFActa Myol
September 2024
Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
Objective: We investigated myosin heavy chain (MyHC) isoform expression at early postnatal stages of clinically and genetically confirmed spinal muscular atrophy type 1 (SMA1) patients, in order to study the muscle fibre differentiation compared to age-matched controls at single fibre level.
Methods: Open skeletal muscle biopsies were performed from the quadriceps muscle in four SMA1 patients and three age-matched controls. Standard techniques were used for immunohistochemistry of embryonic and foetal MyHCs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!