Mesangial matrix deposition is the hallmark of hypertensive and diabetic glomerulopathy. At similar levels of systemic hypertension, Dahl salt-sensitive but not spontaneously hypertensive rats (SHR) develop glomerular hypertension, which is accompanied by upregulation of transforming growth factor beta1 (TGF-beta1), mesangial matrix expansion, and sclerosis. GLUT-1 is ubiquitously expressed and is the predominant glucose transporter in mesangial cells. In mesangial cells in vitro, GLUT-1 overexpression increases basal glucose transport, resulting in excess fibronectin and collagen production. TGF-beta1 has been shown to upregulate GLUT-1 expression. We demonstrated that in hypertensive Dahl salt-sensitive (S) rats fed 4% NaCl (systolic blood pressure [SBP]: 236+/-9 mm Hg), but not in similarly hypertensive SHR (SBP: 230+/-10 mm Hg) or their normotensive counterparts (Dahl S fed 0.5% NaCl, SBP: 145+/-5 mm Hg; and Wistar-Kyoto, SBP: 137+/-3 mm Hg), there was an 80% upregulation of glomerular GLUT-1 protein expression (P< or =0.03). This was accompanied by a 2.7-fold upregulation of TGF-beta1 protein expression in glomeruli of DSH compared with DSN rats (P=0.02). TGF-beta1 expression was not upregulated and did not differ in the glomeruli of Wistar-Kyoto and SHR rats. As an in vitro surrogate of the in vivo hemodynamic stress imposed by glomerular hypertension, we used mechanical stretching of human and rat mesangial cells. We found that after 33 hours of stretching, mesangial cells overexpressed GLUT-1 (40%) and showed an increase in basal glucose transport of similar magnitude (both P< or =0.01), which could be blocked with an anti TGF-beta1-neutralizing antibody. These studies suggest a novel link between hemodynamic and metabolic factors that may cooperate in inducing progressive glomerular injury in conditions characterized by glomerular hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.HYP.0000075949.19968.EF | DOI Listing |
Genes Dis
March 2025
Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China.
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis.
View Article and Find Full Text PDFVet Pathol
December 2024
Pfizer Inc., Cambridge, MA.
The kidney plays an important role in iron homeostasis and mesangial cells (MCs) are phagocytic cells important for glomerular homeostasis. Sickle hemoglobin (HbS) modulators are promising clinical candidates for treatment of sickle cell disease. Although they prevent disease pathophysiology of HbS polymerization and red blood cell (RBC) sickling by increasing hemoglobin oxygen affinity, higher oxygen affinity can also cause transient tissue hypoxia with compensatory increases in erythropoiesis and subsequent increases in RBC turnover.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Biology Department, College of Education for Pure Sciences, University of Anbar, Iraq.
This study aimed to evaluate the therapeutic effects of B6 in rats experimentally intoxicated by benzopyrene. Twenty-eight Male Sprague Dawley (white Swiss) rats weighing 170-210 g and 3-4 months old were utilized in this examination. Rats were divided into 4 control groups (G1), B[a]P 2 pmol/μL (G2), B6 only once per 2 days for a full month at 1000 mcg (15 dose per month) (G3), B6 + B[a]P (G4).
View Article and Find Full Text PDFKidney Int
December 2024
Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. Electronic address:
A common observation in diabetic kidney disease is lipid accumulation, but the mechanism(s) underlying this pathology is unknown. Inhibition of Vascular endothelial growth factor B (VEGF-B) signaling was shown to prevent glomerular lipid accumulation and ameliorated diabetic kidney disease in experimental models. Here, we examined kidney biopsies from patients with Type 2 (84 %) and Type 1 diabetes (16 %), combined with data mining of RNA-seq dataset analyses in patients with diabetic kidney disease.
View Article and Find Full Text PDFNephrology (Carlton)
January 2025
Department of Nephrology, Ajou University School of Medicine, Suwon, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!