1 Urotensin-II (U-II) is among the most potent mammalian vasoconstrictors identified and may play a role in the aetiology of essential hypertension. Currently, only one mouse U-II receptor (UT) gene has been cloned. It is postulated that this protein is solely responsible for mediating U-II-induced vasoconstriction. 2 This hypothesis has been investigated in the present study, which assessed basal haemodynamics and vascular reactivity to hU-II in wild-type (UT((+/+))) and UT receptor knockout (UT((-/-))) mice. 3 Basal left ventricular end-diastolic and end-systolic volumes/pressures, stroke volumes, mean arterial blood pressures, heart rates, cardiac outputs and ejection fractions in UT((+/+)) mice and in UT((-/-)) mice were similar. 4 Relative to UT((+/+)) mouse isolated thoracic aorta, where hU-II was a potent spasmogen (pEC(50)=8.26+/-0.08) that evoked relatively little vasoconstriction (17+/-2% 60 mM KCl), vessels isolated from UT((-/-)) mice did not respond to hU-II. However, in contrast, the superior mesenteric artery isolated from both the genotypes did not contract in the presence of hU-II. Reactivity to unrelated vasoconstrictors (phenylephrine, endothelin-1, KCl) and endothelium-dependent/independent vasodilator agents (carbachol, sodium nitroprusside) was similar in the aorta and superior mesenteric arteries isolated from both the genotypes. 5 The present study is the first to directly link hU-II-induced vasoconstriction with the UT receptor. Deletion of the UT receptor gene results in loss of hU-II contractile action with no 'nonspecific' alterations in vascular reactivity. However, as might be predicted based on the limited contractile efficacy recorded in vitro, the contribution that hU-II and its receptor make to basal systemic haemodynamics appears to be negligible in this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573852 | PMC |
http://dx.doi.org/10.1038/sj.bjp.0705254 | DOI Listing |
Antioxid Redox Signal
December 2024
National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease, and podocyte injury is one of the major contributors to DKD. As a crucial transcriptional factor that regulates cellular response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is an attractive therapeutic target for DKD. In this study, we evaluated the therapeutic potential of DDO-1039, a novel small-molecule Nrf2 activator developed with protein-protein interaction strategy, on podocyte injury in DKD.
View Article and Find Full Text PDFDev Growth Differ
December 2024
Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
Transcription factors collaborate with epigenetic regulatory factors to orchestrate cardiac differentiation for heart development, but the underlying mechanism is not fully understood. Here, we report that GATA-6 induces cardiac differentiation but peroxisome proliferator-activated receptor α (PPARα) reverses GATA-6-induced cardiac differentiation, possibly because GATA-6/PPARα recruits the polycomb protein complex containing EZH2/Ring1b/BMI1 to the promoter of the cardiac-specific α-myosin heavy chain (α-MHC) gene and suppresses α-MHC expression, which ultimately inhibits cardiac differentiation. Furthermore, Ring1b ubiquitylates PPARα and GATA-6.
View Article and Find Full Text PDFFront Immunol
December 2024
Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
Background: Immune checkpoint inhibitors (ICIs) treatment have shown high efficacy for about 15 cancer types. However, this therapy is only effective in 20-30% of cancer patients. Thus, the precise biomarkers of ICI response are an urgent need.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain.
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules.
View Article and Find Full Text PDFJ Family Med Prim Care
November 2024
Department of Biochemistry, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, India.
Background: Low-density lipoprotein receptor-related protein-2 (LRP2), also called megalin, is a multi-ligand receptor of the LDL receptor gene family mediating reabsorption of ligands like Apo-A1. Type 2 diabetes mellitus (T2DM) may possibly disrupt megalin functions as it is found to be regulated by insulin. This might cause cardiovascular complications due to derangement in lipoprotein metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!