The long-term persistence of polydnavirus (PDV) DNA in infected lepidopteran cell cultures has suggested that at least some of the virus sequences become integrated permanently into the cell genome. In the current study, we provide supportive evidence of this event. Cloned libraries were prepared from two different Lymantria dispar (gypsy moth) cell lines that had been maintained in continuous culture for more than five years after infection with Glyptapanteles indiensis PDV (GiPDV). Junction clones containing both insect chromosomal and polydnaviral sequences were isolated. Precise integration junction sites were identified by sequence comparison of linear (integrated) and circular forms of the GiPDV genome segment F, from which viral sequences originated. Host chromosomal sequences at the site of integration varied between the two L. dispar cell lines but virus sequence junctions were identical and contained a 4-base pair CATG palindromic repeat. The GiPDV segment F does not encode any self-replication or self-insertion proteins, suggesting a host-derived mechanism is responsible for its in vitro integration. The chromosomal site of one junction clone contained sequences indicative of a new L. dispar retrotransposon, including a putative reverse transcriptase and integrase located upstream of the site of viral integration. A potential mechanism is proposed for the integration of PDV DNA in vitro. It remains to be seen if integration of the virus also occurs in the lepidopteran host in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-1910(03)00062-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!