Fate of neuroblast progeny during postembryonic development of mushroom bodies in the house cricket, Acheta domesticus.

J Insect Physiol

CNRS, Laboratoire de Neurobiologie, 31 Chemin Joseph Aiguier, 13402, Marseille, France

Published: March 2000

Mushroom bodies represent the main sensory integrative center of the insect brain and probably play a major role in the adaptation of behavioral responses to the environment. Taking into account the continuous neurogenesis of cricket mushroom bodies, we investigated ontogenesis of this brain structure. Using BrdU labeling, we examined the fate of neuroblast progeny during the postembryonic development. Preimaginal Kenyon cells survived throughout larval and imaginal moults and persisted during adulthood. Our results indicate that the location of labelled Kenyon cells in the cortex of the adult cricket mainly depends upon the period when they were produced during development. The present data demonstrate that cricket mushroom bodies grow from the inside out and that, at any developmental stage, the center of the cortex contains the youngest Kenyon cells. This study also allowed us to observe the occurrence of quiescent neuroblasts. Kenyon cell death during postembryonic and adult life seems to be reduced. Although preimaginal Kenyon cells largely contribute to adult mushroom body structure, a permanent remodeling of the mushroom body occurs throughout the whole insect life due to the persistence of neurogenesis in the house cricket. Further studies are needed to understand the functional significance of these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0022-1910(99)00184-5DOI Listing

Publication Analysis

Top Keywords

mushroom bodies
16
kenyon cells
16
fate neuroblast
8
neuroblast progeny
8
progeny postembryonic
8
postembryonic development
8
house cricket
8
cricket mushroom
8
preimaginal kenyon
8
mushroom body
8

Similar Publications

is a traditional Chinese medicinal fungus, and ganoderma triterpenoids (GTs) are one of the main bioactive compounds. These compounds have various pharmacological functions, including anti-tumor, antioxidant, anti-inflammatory, liver-protective, and immune-regulating effects. However, the manner in which they accumulate, and their biosynthesis mechanisms remain unclear.

View Article and Find Full Text PDF

Background/objectives: Mycotoxins, secondary metabolites synthesized by filamentous fungi, have been classified as dangerous substances and proven to be carcinogenic, as well as to have genotoxic, nephrotoxic, hepatotoxic, teratogenic, and mutagenic properties. Despite numerous trials to develop an effective and safe-for-human-health method of detoxification, there is still a high risk associated with the occurrence of these toxins in food and feed. Biological methods of food preservation are an alternative option to conventional chemical and physical methods, characterized by their less negative impact on human health as well as their high efficiency against filamentous fungi and other foodborne pathogens.

View Article and Find Full Text PDF

Growth and Yield Performance of Cultivated on Agricultural Residues.

Mycobiology

December 2024

Department of Chemistry, College of Natural Sciences, Salale University, Fiche, Ethiopia.

Food insecurity and malnutrition are among the major problems in most developing nations recently. Mushroom cultivation is one of the promising strategies to overcome these challenges. The growth and productivity of mushrooms differ because of their wide range of cultivation substrates.

View Article and Find Full Text PDF

Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation.

Arch Microbiol

January 2025

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.

Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers.

View Article and Find Full Text PDF

Glial-derived TNF/Eiger signaling promotes somatosensory neurite sculpting.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.

The selective elimination of inappropriate projections is essential for sculpting neural circuits during development. The class IV dendritic arborization (C4da) sensory neurons of Drosophila remodel the dendritic branches during metamorphosis. Glial cells in the central nervous system (CNS), are required for programmed axonal pruning of mushroom body (MB) γ neurons during metamorphosis in Drosophila.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!