Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Parasitism of the tobacco hornworm, Manduca sexta, by the braconid wasp Cotesia congregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid's emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 &mgr;g. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-1910(02)00097-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!