Pigment-dispersing factor (PDF) is an octadeca-neuropeptide widely distributed in the insect brain and suggested to be involved in the insect circadian systems. We have examined its effects on the neuronal activity of the brain efferents in the optic stalk including medulla bilateral neurons (MBNs) in the cricket, Gryllus bimaculatus. The MBNs are visually responding interneurons connecting the bilateral medulla, which show a clear day/night change in their light responsiveness that is greater during the night. Microinjection of PDF into the optic lobe induced a significant increase in the spontaneous activity of the brain efferents and the photo-responsiveness of the MBNs during the day, while little change was induced during the night. The enhancing effects began to occur about 20 min after the injection and another 10 min was necessary to reach the maximal level. The effects of PDF were dose-dependent. When 22 nl of anti-Gryllus-PDF (1:200) IgG was injected into the medulla, the photo-responsiveness of the MBNs was suppressed in both the day and the night with greater magnitude during the night. No significant suppression was induced by injection of the same amount of IgG from normal rabbit serum. These results suggest that in the cricket optic lobe, PDF is released during the night and enhances MBNs' photo-responsiveness to set their night state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0022-1910(02)00270-6 | DOI Listing |
Acta Physiol (Oxf)
February 2025
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations.
View Article and Find Full Text PDFJ Neurosci
January 2025
Wellcome Centre for Integrative Neuroimaging; Nuffield Department of Clinical Neuroscience, University of Oxford.
Damage to the primary visual cortex (V1) results in visual field deficits on the contralateral side of the world corresponding to the damaged region. Patients with such loss nonetheless show varying residual vision within this apparently blind region, with the neural mechanisms underlying this ability obscured by small study populations. We identified lesions on structural scans from 39 patients (12 female) with hemianopia and occipital lobe damage.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Iran University of Science and Technology, Tehran, 16846-1314, Iran.
The holographic technique is one of the simplest methods for designing antennas based on metasurface. This paper presents a spoof surface plasmon polariton (SSPP) leaky-wave antenna (LWA) based on the concept of impedance modulated metasurfaces by the anisotropic holographic technique. Instead of parasitic elements, anisotropic SSPP elements are exploited to achieve radiation with circular polarization.
View Article and Find Full Text PDFBrain Sci
November 2024
Brain.Space, Tel Aviv 58855, Israel.
Background: Electroencephalogram (EEG) biomarkers with adequate sensitivity and specificity to reflect the brain's health status can become indispensable for health monitoring during prolonged missions in space. The objective of our study was to assess whether the basic features of the posterior dominant rhythm (PDR) change under microgravity conditions compared to earth-based scalp EEG recordings.
Methods: Three crew members during the 16-day AXIOM-1 mission to the International Space Station (ISS), underwent scalp EEG recordings before, during, and after the mission by means of a dry-electrode self-donning headgear designed to support long-term EEG recordings in space.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!