BACKGROUND: MALDI-TOF-MS has become an important analytical tool in the identification of proteins and evaluation of their role in biological processes. A typical protocol consists of sample purification, separation of proteins by 2D-PAGE, enzymatic digestion and identification of proteins by peptide mass fingerprint. Unfortunately, this approach is not appropriate for the identification of membrane or low or high pI proteins. An alternative technique uses 1D-PAGE, which results in a mixture of proteins in each gel band. The direct analysis of the proteolytic digestion of this mixture is often problematic because of poor peptide detection and consequent poor sequence coverage in databases. Sequence coverage can be improved through the combination of several matrices. RESULTS: The aim of this study was to trust the MALDI analysis of complex biological samples, in order to identify proteins that interact with the membrane network of keratinocytes. Peptides obtained from protein trypsin digestions may have either hydrophobic or hydrophilic sections, in which case, the direct analysis of such a mixture by MALDI does not allow desorbing of all peptides. In this work, MALDI/MS experiments were thus performed using four different matrices in concert. The data were analysed with three algorithms in order to test each of them. We observed that the use of at least two matrices in concert leads to a twofold increase of the coverage of each protein. Considering data obtained in this study, we recommend the use of HCCA in concert with the SA matrix in order to obtain a good coverage of hydrophilic proteins, and DHB in concert with the SA matrix to obtain a good coverage of hydrophobic proteins. CONCLUSION: In this work, experiments were performed directly on complex biological samples, in order to see systematic comparison between different matrices for real-life samples and to show a correlation that will be applicable to similar studies. When 1D gel is needed, each band may contain a great number of proteins, each present in small amounts. To improve the proteins coverage, we have performed experiments with some matrices in concert. These experiments enabled reliable identification of proteins, without the use of Nanospray MS/MS experiments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156602 | PMC |
http://dx.doi.org/10.1186/1477-5956-1-2 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Christiaan de Wet Road, Florida, Johannesburg, 1709, South Africa.
Per- or poly-fluoroalkyl substances (PFAS) are a group of anthropogenic compounds that are used in a variety of industrial processes and consumer products with their ubiquitous presence in the environment recently gaining relevant attention. Progress and milestones on PFAS contamination within multiple environments from African continent are highlighted in this review. Identification and quantitation of PFAS within African environments is important to the public at large because of their toxicity and possible ecotoxicological risk.
View Article and Find Full Text PDFCommun Eng
November 2024
ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.
Melt electrowriting (MEW) is an emerging high-resolution 3D printing technology used in biomedical engineering, regenerative medicine, and soft robotics. Its transition from academia to industry faces challenges such as slow experimentation, low printing throughput, poor reproducibility, and user-dependent operation, largely due to the nonlinear and multiparametric nature of the MEW process. To address these challenges, we applied computer vision and machine learning to monitor and analyze the process in real-time through imaging of the MEW jet between the nozzle-collector gap.
View Article and Find Full Text PDFJ Cell Sci
November 2024
Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
J Chem Phys
October 2024
Department of Chemistry, Technical University of Denmark, Kemitorvet 206, 2800 Kgs. Lyngby, Denmark.
The strong tendency for self-aggregation together with an intriguing mechanism for the microhydration of monoethanolamine (MEA) have been explored by low-temperature far-infrared cluster spectroscopy in doped neon "quantum" matrices at 4 K complemented by high-level quantum chemical modeling. In addition to the assignment of new mid-infrared perturbed intramolecular transitions, a distinct far-infrared transition is unambiguously assigned to the concerted large-amplitude hydrogen bond librational motion of the MEA homodimer. This observation confirms a global "head-to-head" intermolecular potential energy minimum associated with the formation of a compact doubly intermolecular OH⋯N hydrogen-bonded cyclic structure, where both monomeric intramolecular OH⋯N hydrogen bonds are broken upon complexation.
View Article and Find Full Text PDFProc Biol Sci
October 2024
Botany and Mycology Unit, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!