Farnesyl protein transferase inhibitor ZARNESTRA R115777 - history of a discovery.

Curr Top Med Chem

Johnson & Johnson Pharmaceutical Research, Campus de Maigremont, BP 615, 27106 Val de Reuil Cedex, France.

Published: June 2003

R115777 (R)-6-amino[(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone is a potent and selective inhibitor of farnesyl protein transferase with significant antitumor effects in vivo subsequent to oral administration in mice. Taking its roots into Janssen's ketoconazole and retinoic acid catabolism programs, our interest into Ras prenylation process led us stepwise to identify the key structural features of R115777. Methodology, structure activity relationships, and pharmacology will be presented. R115777 is currently in phase III clinical evaluation.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026033452050DOI Listing

Publication Analysis

Top Keywords

farnesyl protein
8
protein transferase
8
transferase inhibitor
4
inhibitor zarnestra
4
r115777
4
zarnestra r115777
4
r115777 history
4
history discovery
4
discovery r115777
4
r115777 r-6-amino[4-chlorophenyl1-methyl-1h-imidazol-5-ylmethyl]-4-3-chlorophenyl-1-methyl-21h-quinolinone
4

Similar Publications

Molecular insights into a distinct class of terpenoid cyclases.

Nat Commun

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, China.

Article Synopsis
  • Terpenoid cyclases (TCs) are crucial for producing diverse natural compounds, with the BcABA3 enzyme from the fungus Botrytis cinerea representing a unique type that deviates from typical TCs.
  • Crystal structures of BcABA3 and related enzymes show they have an all-α-helix fold and interact with specific substrates through a unique binding mechanism.
  • Findings suggest significant potential for exploring more uncharacterized terpenoids synthesized by these enzymes, highlighting the need for further research in this area.
View Article and Find Full Text PDF

Characterization and structural analysis of a versatile aromatic prenyltransferase for imidazole-containing diketopiperazines.

Nat Commun

January 2025

Key Laboratory of Marine Drugs Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P R China.

Prenylation modifications of natural products play essential roles in chemical diversity and bioactivities, but imidazole modification prenyltransferases are not well investigated. Here, we discover a dimethylallyl tryptophan synthase family prenyltransferase, AuraA, that catalyzes the rare dimethylallylation on the imidazole moiety in the biosynthesis of aurantiamine. Biochemical assays validate that AuraA could accept both cyclo-(L-Val-L-His) and cyclo-(L-Val-DH-His) as substrates, while the prenylation modes are completely different, yielding C2-regular and C5-reverse products, respectively.

View Article and Find Full Text PDF

Fibrosis, characterised by excessive extracellular matrix deposition, contributes to both organ failure and significant mortality worldwide. Whereas fibroblasts are activated into myofibroblasts, marked by phenotypic factors such as α-smooth muscle actin (α-SMA), periostin, fibroblast activation protein (FAP) and heat shock protein 47 (HSP47), the cellular processes of trans-differentiation for fibrosis development remain poorly understood. Herein, we hypothesised that the molecular signalling of geranylgeranyl pyrophosphate (GGPP), a crucial biochemical molecule for protein prenylation, is essential in the regulation of profibrotic mechanisms for fibroblast-to-myofibroblast activation.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore the effects of targeting the mevalonate pathway (MVP) in rhabdomyosarcoma (RMS), a common soft tissue tumor in young individuals.
  • In silico analyses showed that higher levels of MVP-related genes correlated with poorer patient survival, while in vitro tests revealed that MVP inhibitors significantly reduced RMS cell growth, migration, and survival.
  • In vivo experiments demonstrated the effectiveness of MVP inhibition in RMS xenografts, highlighting the potential of these inhibitors as a therapeutic strategy against RMS.
View Article and Find Full Text PDF
Article Synopsis
  • Nitrogen bisphosphonates like zoledronic acid treat osteolytic bone diseases by targeting farnesyl diphosphate synthase (FDPS), but their strong bone affinity limits their systemic use.
  • RAM2061, a novel GGDPS inhibitor, shows promising drug-like qualities, such as prolonged half-life and anti-cancer effects in mouse models, and impacts osteoclast biology by disrupting differentiation and function.
  • Although RAM2061 treatment didn't significantly affect overall bone turnover in mice, it reduced mature osteoclast numbers, signaling its potential for further investigation in bone remodeling therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!