G protein-coupled receptors (GPCRs) represent a major class of signal transduction proteins that modulate various biological functions. GPCRs are one of the most common targets for drug development-currently, 39 of the top 100 marketed drugs in use act directly or indirectly through activation or blockade of GPCR-mediated receptors. Nearly 160 GPCRs have been identified based on their gene sequence and their ability to interact with known endogenous ligands. However, an estimated 500-800 additional GPCRs have been classified as "orphan" receptors (oGPCRs) because their endogenous ligands have not yet been identified. Given that known GPCRs have proven to be such clinically useful drug targets, these oGPCRs represent a rich group of receptor targets for the development of novel and improved medicines. To develop ligands for these potential drug targets requires the ability to identify groups or pools of GPCRs that are likely to be involved in a specific disease process (obesity, schizophrenia, depression, etc.) and to dissect out the pharmacological and signal transduction differences between these GPCR subtypes. It also requires the development of assays to detect ligands of GPCRs even when the endogenous ligands are unidentified. This paper will review novel strategies to identify clinically interesting oGPCRs and to screen for small molecules that act as ligands without prior knowledge of endogenous ligands. This involves the use of constitutively activated GPCRs, a technology that provides a unique opportunity to identify several classes of pharmacological agents, including agonists, inverse agonists and allosteric modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568007023339508 | DOI Listing |
J Med Chem
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark.
GABA receptors (GABARs) are the major elements of inhibitory neurotransmission in the central nervous system (CNS). They are established targets for regulation by endogenous brain neuroactive steroids (NASs) such as pregnanolone. However, the complexity of de novo synthesis of NAS derivatives has hindered attempts to circumvent the principal limitations of using endogenous NASs, including selectivity and limited oral bioavailability.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Geriatrics Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Lingnan Medical Research Center, Guangzhou University of Chinese Medicine Guangzhou 510405, China Guangdong Clinical Research Institute of Chinese Medicine Guangzhou 510407, China.
This study aimed to investigate the ameliorative effect of Xinyang Tablets on myocardial fibrosis in uremic cardiomyopathy(UCM) using single-cell sequencing technology. UCM mouse models were established by 5/6 nephrectomy(NPM) and randomly divided into the model group, Xinyang Tablets group, and sham-operated(sham) group as the control. The Xinyang Tablets group received postoperative interventions of Xinyang Tablets(0.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
Small ubiquitin-like modifier (SUMO) plays a pivotal role in diverse cellular processes and is implicated in diseases such as cancer and neurodegenerative disorders. However, large-scale identification of endogenous SUMO-1 faces challenges due to limited enrichment methods and its lower abundance compared to SUMO-2/3. Here we propose a novel combinatorial peptide strategy, combined with anti-adhesive polymer development, to enrich endogenous SUMO-1 modified peptides, revealing a comprehensive SUMOylation landscape.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic.
The Takeda G protein-coupled receptor 5 (TGR5), also known as GPBAR1 (G protein-coupled bile acid receptor), is a membrane-type bile acid receptor that regulates blood glucose levels and energy expenditure. These essential functions make TGR5 a promising target for the treatment of type 2 diabetes and metabolic disorders. Currently, most research on developing TGR5 agonists focuses on modifying the structure of bile acids, which are the endogenous ligands of TGR5.
View Article and Find Full Text PDFEndocrinology
January 2025
Graduate Program in Cellular and Molecular Biology.
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast two-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!