A kinetic model for the glucose-fructose-glycine browning reaction.

J Agric Food Chem

Procter Department of Food Science, University of Leeds, United Kingdom.

Published: June 2003

The browning of glucose-fructose-glycine mixtures involves parallel glucose-glycine and fructose-glycine reactions, which share a common intermediate, the immediate precursor of melanoidins in the kinetic model. At pH 5.5, 55 degrees C glucose is converted into this intermediate in a two step process where k(1) = (7.8 +/- 1.1) x 10(-)(4) mol L(-)(1) h(-)(1) and k(2) = (1.84 +/- 0.31) x 10(-)(3) h(-)(1) according to established kinetics, whereas fructose is converted into this intermediate in a single step where k(4) = 5.32 x 10(-)(5)()()mol L(-)(1) h(-)(1). The intermediate is converted to melanoidins in a single rate limiting process where k(mix) = 0.0177 h(-)(1) and the molar extinction coefficient (based on the concentration of sugar converted) of the melanoidins so formed is 1073 +/- 4 mol(-)(1) L cm(-)(1). Whereas the value of k(mix) is the same when the individual sugars undergo browning, the value of the molar extinction coefficient is similar to that for melanoidins from the glucose-glycine reaction (955 +/- 45 mol(-)(1) L cm(-)(1)) but it is approximately double the value for melanoidins from the fructose-glycine reaction (478 +/- 18 mol(-)(1) L cm(-)(1)). This is the reason that the effects of glucose and fructose on the rate of browning are synergistic.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf026027eDOI Listing

Publication Analysis

Top Keywords

+/- mol-1
12
mol-1 cm-1
12
kinetic model
8
converted intermediate
8
l-1 h-1
8
converted melanoidins
8
molar extinction
8
extinction coefficient
8
melanoidins
5
+/-
5

Similar Publications

Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. Part III: partitioning into torsional groups.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Institute for Molecular Science and Engineering, Imperial College London, London SW7 2AZ, United Kingdom.

We present an approach to reduce this computational cost substantially, based on the partitioning of the molecule into geometrically separated torsional groups, with the dependence of the intramolecular energy and atomic point charges and dependent degrees of freedom on molecular conformation being computed as a linear combination of the contributions of these groups. This can lead to large savings in computational cost without a significant impact on accuracy, as demonstrated in the cases of N-acetyl-para-aminophenol (paracetamol) and methyl 4-hydroxybenzoate (methyl paraben). The approach is also applied successfully to two larger molecules, benzyl [4-(4-methyl-5-[(4-methylphenyl)sulfonyl]-1,3-thiazol-2-yl)phenyl]carbamate (molecule XX from the fifth CSP blind test) and (2S)-2-[4-(3-fluorobenzyloxy)benzylamino]propionamide (safinamide), for which we conduct the first reported CSP study.

View Article and Find Full Text PDF

Effect of Hydration States on the Anti-Icing/Frosting Performance of Zwitterionic Hydrogel-Coated Surfaces.

Langmuir

January 2025

Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Zwitterionic polymers have gained considerable research attention because of their unique properties and have been widely used in many biomedical and electrochemical applications. Recently, zwitterionic polymers have been investigated for use as anti-icing/frosting surfaces; however, key factors influencing their anti-icing/frosting performance and effectiveness under real operational conditions remain underexplored. Therefore, in this study, we quantitatively analyze the hydration states of zwitterionic hydrogels synthesized from polymerizable zwitterions, such as carboxybetaine methacrylate (CBMA), 2-methacryloyloxyethyl phosphorylcholine (MPC), and sulfobetaine methacrylate (SBMA).

View Article and Find Full Text PDF

Construction and Band Gap-Regulation of Ordered Macro-Microporous Single Crystals of an Amine-Linked Covalent Organic Framework.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.

Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.

View Article and Find Full Text PDF

Enthalpy is often the focal point when designing monomers for polymer circularity, but much less is explored on how entropy can be exploited to create polymers with synergistic circularity and properties. Here, we design a series of spiro-lactones (SLs) with closed-chain cycloalk(en)yl substituents at the α,α-position of δ-valerolactone (δVL), which, when combined with the parent δVL and -α,α-dialkyl-substituted δVL with open-chain alkyl groups, provide a desired platform for exploring the circular polymer design by focusing on the entropy change of polymerization. These SLs exhibit finely balanced (de)polymerizability that is regulated chiefly by entropy differentiation, allowing both the facile synthesis of polyester PSLs ( up to 1000 kg mol) in a living fashion and selective depolymerization of the PSLs to completely recover monomers under mild conditions (using a recyclable catalyst at 100 °C).

View Article and Find Full Text PDF

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!