Recent experimental studies showed that activated macrophages/microglia (AMM) express excitatory amino acid transporters (EAATs), suggesting that, in addition to their neurotoxic properties, they also have a neuroprotective role by clearing extracellular glutamate and producing antioxidant glutathione. To test this hypothesis in human, the brain of 12 HIV-positive patients and 3 controls were immunostained for EAAT-1. EAAT-1 was expressed by AMM in all HIV-infected cases but not in HIV-negative controls. Expression varied according to the disease stage. In 5 cases with active HIV-encephalitis (HIVE), AMM strongly expressed EAAT-1 in the white matter and basal ganglia, analogous to HLA-DR and CD68 expression. There was weaker expression in the cortex and perineuronal microglial cells were not involved. In a case with "burnt out" HIVE following highly active antiretroviral therapy (HAART), EAAT-1 expression was mild, identical to that of HLA-DR and CD68 in the white matter and cortex and involved perineuronal microglial cells. In 3 AIDS patients without HIVE and in 3 pre-AIDS cases, EAAT-1 expression in the white matter was weaker than HLA-DR and CD68 expression; there was stronger correlation in the gray matter where perineuronal microglial cells were stained predominantly. Our findings in humans tend to confirm that AMM, particularly perineuronal microglial cells, play a neuroprotective role in the early stages of HIV infection and, possibly, following treatment. This is in keeping with the early microglial activation seen in pre-AIDS cases, and the late occurrence of neuronal loss. It may also explain the reversible cognitive disorders following treatment in some cases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/62.5.475DOI Listing

Publication Analysis

Top Keywords

perineuronal microglial
16
microglial cells
16
neuroprotective role
12
white matter
12
hla-dr cd68
12
excitatory amino
8
amino acid
8
cd68 expression
8
eaat-1 expression
8
pre-aids cases
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!