A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging. | LitMetric

3-O-Methyl-6-[(18)F]fluoro-L-DOPA (OMFD) is a major metabolite of 6-[(18)F]fluoro-L-DOPA. Although synthesis of OFMD was primarily established to study the dopaminergic system, as it is an amino acid analogue, uptake in experimental tumours has been found. The aim of this study was to evaluate the applicability of OMFD for brain tumour imaging and to obtain initial estimates of whole-body biodistribution and radiation dosimetry in humans. Nineteen patients with suspected or confirmed brain tumours were investigated with OMFD and dynamic brain PET, complemented by whole-body PET in seven patients. Tracer kinetics were compared for normal brain and intracerebral lesions. Tissue accumulation was quantified with standardised uptake values (SUVs). Whole-body distribution in combination with tracer kinetics from animal experiments was used for the calculation of radiation dosimetry data. On the basis of OMFD PET, viable brain tumour was suspected in 16 patients with SUVs of 3.0+/-0.8 and a tumour to non-tumour ratio of 1.9+/-0.5. Highest tumour and normal brain uptake occurred between 15 and 30 min, with a subsequent slow decrease. Late whole-body tracer distribution was uniform without specific organ accumulation. Elimination occurred via urine. The mean radiation dose to the whole body was estimated at 0.016 mSv/MBq, with the kidneys as dose-critical organ (0.033 mGy/MBq). In conclusion, OMFD enables the visualisation of brain tumours with SUVs similar to other fluorinated amino acids. The whole-body radiation exposure from OMFD is comparable to that from FDG imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-003-1205-2DOI Listing

Publication Analysis

Top Keywords

brain tumour
12
brain
8
tumour imaging
8
radiation dosimetry
8
brain tumours
8
tracer kinetics
8
normal brain
8
omfd
6
tumour
5
whole-body
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!