The topological relationships between erbB receptors and ligands of the epidermal growth factor family were characterized by immunocytochemistry in normal and psoriatic epidermis and in proliferating and differentiating human keratinocytes in culture. Spatial colocalization of receptors and ligands was assessed by dual immunostaining. Expression of epidermal growth factor receptor (EGFr), erbB2, and erbB3, but not erbB4, was detected throughout the epidermis, although labeling for erbB2 and erbB3 was accentuated in the upper spinous layers, and EGFr was more strongly labeled in basal cells. Of the tested growth factors, heparin-binding epidermal growth factor (HB-EGF) was diffusely expressed throughout normal and psoriatic epidermis and sparsely colocalized with EGFr in all viable epidermal layers, with increased colocalization in psoriatic epidermis. In contrast, betacellulin and heregulin/neu differentiation factor (NDF) alpha were largely restricted in their distribution to the upper spinous and granular layers. Betacellulin was downregulated in psoriatic keratinocytes. Although heregulin/NDF-beta was undetectable in normal epidermis, it was upregulated in psoriasis. Betacellulin and heregulin/NDF-alpha strikingly colocalized with EGFr and erbB3 receptors in the granular layer and in a declining gradient from the granular zone to the basal layer, respectively. Similar patterns were observed in cultured keratinocytes under proliferative conditions and upon differentiation in high-calcium medium. These morphological data collectively suggest divergent functions for members of the growth factor family, and in particular, we propose that betacellulin and heregulin/NDF-alpha are involved in epidermal morphogenesis and/or in maintenance of the differentiated phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00403-003-0391-xDOI Listing

Publication Analysis

Top Keywords

epidermal growth
16
growth factor
16
normal psoriatic
12
psoriatic epidermis
12
heparin-binding epidermal
8
erbb receptors
8
human keratinocytes
8
receptors ligands
8
factor family
8
erbb2 erbb3
8

Similar Publications

Effects of Spinal Cord Stimulation in Patients with Small Fiber and Associated Comorbidities from Neuropathy After Multiple Etiologies.

J Clin Med

January 2025

Research Group in Social and Nutritional Epidemiology, Pharmacoepidemiology and Public Health, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain.

The aim of this study was to evaluate the effects of spinal cord stimulation (SCS) on pain, neuropathic symptoms, and other health-related metrics in patients with chronic painful peripheral neuropathy (PN) from multiple etiologies. A prospective single center observational longitudinal cohort study assessed SCS efficacy from April 2023 to May 2024, with follow-ups at 2, 4, 6, and 12 months in 19 patients suffering from the painful polyneuropathy of diverse etiologies: diabetic (DPN), idiopathic (CIAP), chemotherapy-induced (CIPN), and others. Patients were implanted with a neurostimulator (WaveWriter Alpha, Boston Scientific Corporation, Valencia, CA, USA) and percutaneous leads targeting the lower limbs (T10-T11) and, if necessary, the upper limbs (C4-C7).

View Article and Find Full Text PDF

: In Romania, breast cancer is the second most common cancer, the third leading cause of cancer death, and the most prevalent cancer overall. De novo advanced-stage breast cancer often presents in clinical practice, and treatment decisions are best made in a multidisciplinary tumor board (MTD) involving surgeons, radiotherapists, and medical oncologists. Significant advances in systemic therapies, particularly in progression-free survival (PFS) and overall survival (OS), have surpassed traditional palliative mastectomy and radiotherapy for local control.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).

View Article and Find Full Text PDF

Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!