The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n = 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156200 | PMC |
http://dx.doi.org/10.1128/jvi.77.12.6965-6978.2003 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China.
Purpose: To investigate the therapeutic efficacy of BEZ235, a dual PI3K/mTOR inhibitor, in suppressing pathological neovascularization in an oxygen-induced retinopathy (OIR) mouse model and explore the role of cyclin D1 in endothelial cell cycle regulation.
Methods: Single-cell RNA sequencing was performed to analyze gene expression and cell-cycle alterations in retinal endothelial cells under normoxic and OIR conditions. The effects of BEZ235 on human umbilical vein endothelial cells (HUVECs) and human retinal microvascular endothelial cells (HRMECs) were evaluated by assessing cell viability, cell-cycle progression, proliferation, migration, and tube formation.
Andrology
January 2025
Department of Surgery, Nemours Children's Hospital, Orlando, Florida, USA.
Objective: Micropenis is a condition with significant physical and psychological implications caused mainly by decreased androgen action in penile development. Kctd13-knockout (Kctd13-KO) mice have micropenis, cryptorchidism, and fertility defects because of reduced levels of androgen receptor (AR) and SOX9. We hypothesized that normalizing the levels of AR and SOX9 in the Kctd13-KO penis could help us to understand the mechanism of action of these signaling pathways on penile development.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Background And Purpose: Phentolamine is a non-selective α-adrenoreceptor antagonist used to reverse local anaesthesia, for example, during dental procedures when a vasoconstrictor is co-applied. Phentolamine-mediated vasodilation leads to faster clearance of injected drugs. Previous electrophysiological studies hypothesized that phentolamine acts as a modulator of voltage-gated sodium channels, which could conflict with its indication as local anaesthetic reversal agent.
View Article and Find Full Text PDFChemMedChem
January 2025
Universita degli Studi di Catania, Department of Drug Sciences, Viale A. Doria, 6, 95100, Catania, ITALY.
This study presents a series of tetrahydropyrrolo[3,4-c]pyrazole-based compounds designed as sigma-1 receptor (S1R) ligands, focusing on optimizing affinity and reducing off-target effects. We synthesized various derivatives from commercially available precursors and, through radioligand binding assays, assessed their binding affinity for S1R and sigma-2 receptor (S2R). Compound 19 (AD417), containing a benzyl group and an amide substituent, demonstrated notable S1R affinity (Ki = 75 nM) with 6-fold selectivity over S2R.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
Cancer cells cope with oxidative stress for their proliferation and metastasis by equipping antioxidant systems, among which the antioxidant enzymes peroxiredoxins (PRDXs) play crucial roles. However, whether PRDXs exhibit nonenzymatic functions remains unclear. Here, it is shown that the 1-cysteine PRDX (PRDX6) upregulates nicotinamide N-methyltransferase (NNMT) to promote the growth and metastasis of ovarian cancer cells, independently of PRDX6's enzymatic activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!