Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system. The results demonstrated that the DNA gyrase and the topoisomerase IV subunits produce the expected supercoiled DNA and relaxed DNA products, respectively. Additionally, inhibition of these two enzymes by fluoroquinolones has been shown to be comparable to those of the DNA gyrases and topoisomerases of other bacterial strains. In sum, the biological and enzymatic properties of these products are consistent with their authenticity as DNA gyrase and DNA topoisomerase IV enzymes from B. subtilis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1046-5928(03)00068-8DOI Listing

Publication Analysis

Top Keywords

dna gyrase
16
dna topoisomerase
12
gyra gyrb
12
parc pare
12
dna
10
gyrase dna
8
bacillus subtilis
8
pare genes
8
genes dna
8
topoisomerase subunits
8

Similar Publications

Isolation and identification of the causal agent of gummy stem blight disease in Cucumis sativus caused by a bacterial pathogen in China.

Sci Rep

January 2025

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, 730070, China.

Recently, a new bacterial disease was detected on cucumber stalks. In order to study the pathogenesis of this disease, the pathogenic bacteria were isolated and identified on the basis of morphological and molecular characteristics, and further analyzed for pathogenicity and antagonistic evaluation. Pathogenicity analysis showed that HlJ-3 caused melting decay and cracking in cucumber stems, and the strain reisolated from re-infected cucumber stalks was morphologically identical to HlJ-3 colonies, which is consistent with the Koch's postulates.

View Article and Find Full Text PDF

Rifampicin and isoniazid resistance not promote fluoroquinolone resistance in Mycobacterium smegmatis.

PLoS One

January 2025

National Clinical Research Center for Infectious Diseases, Shenzhen Clinical Research Center for Tuberculosis, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China.

Background: The emergence of drug-resistant Tuberculosis (TB) has made treatment challenging. Although fluoroquinolones (FQs) are used as key drugs in the treatment of multidrug-resistant tuberculosis (MDR-TB), the problem of FQs resistance is becoming increasingly serious. Rifampicin (RIF) resistance is considered a risk factor for FQs resistance.

View Article and Find Full Text PDF

In the realm of hospital-acquired and chronic infections, stands out, demonstrating significant associations with increased morbidity, mortality, and antibiotic resistance. Antibiotic-resistant strains are believed to contribute to thousands of deaths each year. Chronic and latent infections are associated with the bacterial toxin-antitoxin (TA) system, although the mechanisms involved are poorly understood.

View Article and Find Full Text PDF

The eukaryotic microrchidia (MORC) protein family are DNA gyrase, Hsp90, histidine kinase, MutL (GHKL)-type ATPases involved in gene expression regulation and chromatin compaction. The molecular mechanisms underlying these activities are incompletely understood. Here, we studied the full-length human MORC2 protein biochemically.

View Article and Find Full Text PDF

Drug resistance in Mycobacterium tuberculosis (Mtb) is a significant challenge in the control and treatment of tuberculosis, making efforts to combat the spread of this global health burden more difficult. To accelerate anti-tuberculosis drug discovery, repurposing clinically approved or investigational drugs for the treatment of tuberculosis by computational methods has become an attractive strategy. In this study, we developed a virtual screening workflow that combines multiple machine learning and deep learning models, and 11 576 compounds extracted from the DrugBank database were screened against Mtb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!