Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice.

Toxicology

Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Jhansi Road, 474002, Gwalior, India.

Published: June 2003

The cyclic peptide toxins microcystins and nodularins are the most common and abundant cyanotoxins present in diverse water systems. They have been the cause of human and animal health hazards and even death. Over 60 microcystin variants have been reported so far. We report here the results of our study on comparative toxicity evaluation of three most predominant microcystins, MC-LR, MC-RR and MC-YR in mice. The mice were administered one LD(50) dose of MC-LR, RR and YR (43, 235.4 and 110.6 micro g/kg body weight, respectively), and biochemical and histological variables were determined at 30 min post-treatment and mean time to death (MTD). Significant increase in liver body weight index was induced by all three variants. There was marginal increase in serum levels of hepatic enzymes viz. AST, ALT and gamma-GT at 30 min post-treatment but 3-4 fold increase was observed at MTD. In contrast, enhanced LDH leakage, DNA fragmentation and depletion of hepatic glutathione was observed at 30 min post treatment in all three variants. There was no change in levels of serum protein, albumin and albumin/globulin ratio. Liver histology showed time dependent severe pathological lesions like congestion, haemorrhage, portal mononuclear cell infiltration and obliteration of chromatin material. Lung lesions were predominantly in bronchi and parenchyma. Though qualitatively lesions were identical in all three microcystin variants, degree of liver and lung lesions varied quantitatively with the toxin. The breathing pattern and respiratory frequency of the mice after i.p. administration of the toxin showed uniform pattern for 90 min followed by abrupt change in the respiratory pattern and instantaneous death. Based on biochemical and histological studies, MC-LR was found to be the most potent toxin followed by MC-YR and MC-RR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-483x(03)00112-4DOI Listing

Publication Analysis

Top Keywords

microcystin variants
12
comparative toxicity
8
toxicity evaluation
8
cyclic peptide
8
body weight
8
biochemical histological
8
min post-treatment
8
three variants
8
lung lesions
8
variants
5

Similar Publications

Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl Treatment Be the Answer?

Environ Sci Technol

January 2025

Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States.

Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits.

View Article and Find Full Text PDF

Identification and occurrence of microcystins in freshwaters and fish from a eutrophic dam through LC-HRMS.

Sci Total Environ

January 2025

Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaén, Spain; University Research Institute for Olives Grove and Olive Oil, University of Jaen, Jaén, Spain.

Microcystins (MCs) are cyclic heptapeptides originating from various cyanobacteria in eutrophic aquatic environments. Their potential consequences on ecosystems and public health underscores the need to explore MCs' occurrence. In this study, liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) analysis and a suspect screening workflow supported by open-source tools were employed for the determination of MCs in freshwater and biota samples from a eutrophic dam in Uruguay.

View Article and Find Full Text PDF

Toxigenic cyanobacteria and microcystins in the oligotrophic pelagic zone and mesotrophic bay of Lake Onego-the second largest lake in Europe-were found for the first time. Microscopic analysis revealed that and dominated in bloom spots in the oligotrophic zone of the lake and and OKin the eutrophic bay. The abundance of cyanobacteria in bloom spots is potentially hazardous for humans and animals.

View Article and Find Full Text PDF

Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene.

Anal Bioanal Chem

December 2024

Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.

Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease).

View Article and Find Full Text PDF

Biodegradation of microcystins by microbiota of duckweed Spirodelapolyrhiza.

Chemosphere

October 2024

Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262 Lublin, Poland. Electronic address:

Cyanobacteria-produced allelochemicals, including hepatotoxic microcystins (MCs), exert an inhibitory effect on macrophyte growth. However, the role of macrophyte-associated bacteria and algae (macrophyte microbiota) in mitigating these immediate negative effects of cyanotoxins remains poorly understood. In this paper, we analyzed the biodegradation of microcystin-RR, MC-LR, and MC-LF by microbiota of the macrophyte Spirodela polyrhiza.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!